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We introduce the language of second quantization in the context of quantum many body systems
and treat the weakly interacting Bose gas at low temperatures.

10.1 Introduction

As we saw in Chapter 8, it is difficult to treat the interparticle interactions in a classical many
body system of particles. As might be expected, the analysis of the analogous quantum system is
even more difficult.

Just as we developed the density expansion of a classical gas by doing perturbation theory
about the ideal gas, we will first treat an interacting many-body quantum system by starting from
the single particle approximation. We know that the wave function Ψ(r1, r2, . . . , rN ) for a system of
N identical interacting particles can be expanded in terms of the wave function Φ(r1, r2, . . . , rN ) of
the noninteracting system. The wave function Φ is given in terms of suitably symmetrized products
of the single particle eigenfunctions φ(ri). If we adopt periodic boundary conditions, φk(r) is given
by

φk(r) =
1

L3/2
eik·r, (10.1)

where L is the linear dimension of the system. Note that φ is a eigenfunction of the momentum
p = ~k.

If the particles are bosons, the wave function Ψ and hence Φ must be symmetric with respect to
the interchange of any two particles. If the particles are fermions, Ψ and Φ must be antisymmetric
with respect to the interchange of any two particles. The latter condition is the generalization of
the Pauli exclusion principle.
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Because of the impossibility of distinguishing identical particles, it is useful to describe non-
interacting quantum systems by specifying only the number of particles in each single particle
state (see Section 6.5). That is, instead of working in coordinate space, we can represent the basis
functions of the many-body wave functions by

|n1n2 . . .〉, (10.2)

where nk is the number of particles in the single particle state φk. For fermions nk equals 0 or 1;
there is no restriction for bosons. For a system with a fixed number of particles N , the occupation
numbers nk satisfy the condition

N =
∑

k

nk. (10.3)

We also learned in Section 6.5 that it is convenient to treat quantum mechanical systems in the
grand canonical ensemble in which the number of particles in a particular single particle quantum
state may vary. For this reason we next introduce a formalism that explicitly allows us to write
the energy of the system in terms of operators that change the number of particles in a given state.

10.2 Occupation Number Representation

If we specify a state of the system in the occupation number representation, it is convenient to
introduce the operators âk and â†k that act on states such as in (10.2). For bosons we define âk

and â†k by

âk| . . . nk . . .〉 =
√

nk| . . . nk − 1 . . .〉, (10.4a)

and
â†k| . . . nk . . .〉 =

√
nk + 1| . . . nk + 1 . . .〉 (10.4b)

From the definition (10.4a) we see that âk reduces the number of particles in state k and leaves the
other occupation numbers unchanged. For this reason âk is called the annihilation or destruction
operator. Similarly, from (10.4b) we that â†k increases the occupation number of state k by unity
and is called the creation operator. The factor of

√
nk is included in (10.4a) to normalize the N

and N − 1 particle wave functions and to make the definitions consistent with the assertion that
âk and â†k are Hermitian conjugates. The factor

√
1 + nk is included for the latter reason.

From the definitions in (10.4), it is easy to show that

âkâ†k|nk〉 = (nk + 1)|nk〉 (10.5a)

â†kâk|nk〉 = nk|nk〉. (10.5b)

We have written |nk〉 for | . . . , nk, . . .〉. By subtracting (10.5b) from (10.5a), we have

(âkâ†k − â†kâk)|nk〉 = |nk〉. (10.6)

In general, we may write that
[âk, â†k] ≡ âkâ†k − â†kâk = 1, (10.7)
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and show that

[âk, â†k] = δkk′ , (10.8)

and
[âk, âk′ ] = [â†k, â†k′ ] = 0. (10.9)

The commutation relations (10.8) and (10.9) define the creation and destruction operators â†k and
âk.

The appropriate definition of âk and â†k is a little more tedious for fermions, and we shall
simply define them by the anticommutation relations:

{âk, â†k} ≡ âkâ†k + â†kâk = 1, (10.10)

and
{âk, âk′} = {â†k, a†k′} = 0. (10.11)

Equation (10.11) is equivalent to the statement that it is not possible to create two particles in the
same single particle state.

10.3 Operators in the Second Quantization Formalism

It is easy to show that for both Bose and Fermi statistics, the number operator N̂k is given by

N̂k = â†kâk. (10.12)

The eigenvalues of N̂k acting on |nk〉 are zero or unity for fermions and either zero or any positive
integer for bosons.

We now wish to write other operators in terms of âk and â†k. To do so, we note that â†k and
âk are the creation and destruction operators for a free particle with momentum p = ~k described
by the wave function (10.1). The kinetic energy is an example of a one-particle operator

T̂ = − ~2

2m

N∑
i=1

∇̂2
i . (10.13)

The form (10.13) in which the momentum p is expressed as an operator is an example of what is
called first quantization. Note that the sum in (10.13) is over the indistinguishable particles in the
system. A more convenient form for T̂ in the second quantization formalism is given by

T̂ =
∑
p

εp â†pâp, (10.14)

where εp = p2/2m and p = ~k. Note that the kinetic energy is diagonal in p. The form of (10.14)
is suggestive and can be interpreted as the sum of the kinetic energy in state p times the number
of particles in this state.
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The form of the two-particle potential energy operator Û can be obtained from straightforward
but tedious arguments. The result can be written as

Û =
1
2

∑
k′

1,k′
1,k1,k2

〈k′
1k

′
2|u|k1k2〉 â†k′

1
â†k′

2
âk1 âk2 . (10.15)

The summation in (10.15) is over all values of the momenta (wave vectors) of a pair of particles
such that the total momentum is conserved in the interaction:

k1 + k2 = k′
1 + k′

2. (10.16)

The matrix element 〈k′
1k

′
2|u|k1k2〉 is given by

〈k′
1k

′
2|u|k1k2〉 =

1
V 2

∫∫
ei(k′

1−k1)·r1+i(k′
2−k2)·r2 u(|r2 − r1|) dr1dr2. (10.17)

We next make the change of variables, R = (r1 + r2)/2 and r = r1 − r2, and write

〈k′
1k

′
2|u|k1k2〉 =

1
V 2

∫∫
ei(k1−k′

1+k2−k′
2)·R ei(k1−k′

1−k2+k′
2)·r/2u(r) dR dr. (10.18a)

Because of the homogeneity of space, the integral over R can be done yielding a Dirac delta function
and the condition (10.16). We thus obtain obtain

〈k′
1k

′
2|u|k1k2〉 = u(k) =

∫
e−ik·ru(r) dr, (10.18b)

where k = k′
2 − k2 = −(k′

1 − k1) is the momentum (wave vector) transferred in the interaction.
With these considerations we can write the Hamiltonian in the form

Ĥ =
∑

p

p2

2m
â†pâp +

1
2V

∑
k,p1,p2

u(k)â†p1+kâ†p2−kâp2 âp1 . (10.19)

We have written p1 and p2 instead of k1 and k2 in (10.19) and chosen units such that ~ = 1.
The order of the operators in (10.15) and (10.19) is important for fermions because the fermion
operators anticommute. The order is unimportant for bosons. The form of the interaction term in
(10.19) can be represented as in Figure 10.1.

10.4 Weakly Interacting Bose Gas

A calculation of the properties of the dilute Bose gas was once considered to have no direct physical
relevance because the gases that exist in nature condense at low temperatures. However, such a
calculation was interesting because the properties of the weakly interacting Bose gas are similar
to liquid 4He. In particular, a dilute Bose gas can be a superfluid even though an ideal Bose gas
cannot. Moreover, in recent years, the dilute Bose gas at low temperatures has been created in
the laboratory (see references).

The condition for a gas to be dilute is that the range of interaction σ should be small in
comparison to the mean distance between the particles, ρ−1/3, that is ρσ3 � 1. Because the gas is
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not done

Figure 10.1: Representation of the matrix element in (10.15).

dilute, we need to consider only binary interactions between particles using quantum perturbation
theory. The difficulty is that because of the rapid increase in the interparticle potential u(r) at
small r, ordinary perturbation theory (the Born approximation) cannot be directly applied.

We can circumvent the lack of applicability of the Born approximation by the following argu-
ment. The scattering cross section is given by |f |2, where f is the scattering amplitude. In the
Born approximation, f is given by

f(k) = − m

4π~2

∫
u(r)e−ik·r dr, (10.20)

where ~k is the momentum transferred in the interaction. In the limit of low temperatures, the
particle momenta are small, and we can set k = 0 in (10.20). If we set f(k = 0) = −a, where a is
the scattering amplitude, we obtain

a = mU0/4π~2 (10.21)

where
U0 =

∫
u(r) dr. (10.22)

In the following, we will set u(k = 0) = U0 = 4π~2a/m, so that we will be able to mimic the result
of doing a true perturbation theory calculation.1

If we assume that u(k) = U0 for al k, a constant, we can write the Hamiltonian as

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V

∑
k,p1,p2

â†p1−kâ†p2+kâp2 âp1 . (10.23)

The form of (10.23) is the same for Bose or Fermi statistics. Only the commutation relations for
the creation and destruction operators are different.

We now follow the approximation method developed by Bogolyubov (1947). In the limit
U0 → 0, Ĥ reduces to the Hamiltonian of the ideal Bose gas. We know that the latter has

1In the language of quantum mechanics, we need to replace the bare interaction u by the t matrix. This
replacement is the quantum mechanical generalization of replacing −βu by the Mayer f function. Not surprisingly,
this replacement can be represented by an infinite sum of ladder-type diagrams. Note that if we interpret the Mayer
f function as the effective interaction between particles, the first cumulant in a high temperature expansion would
yield the same result as the first term in the classical virial expansion.
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a condensate, that is, there is macroscopic occupation of the zero momentum state, so that at
T = 0, N0 = N , and Np = 0 for p 6= 0. For the weakly interacting Bose gas, we expect that the
low lying states do not have zero occupation, but that Np for p > 0 is small so that N0 ≈ N . We
proceed by assuming that N −N0 is small and extract the k = 0 terms in Ĥ. For example,

N̂ =
∑
p

â†pâp = â†0â0 +
∑
p 6=0

â†pâp. (10.24)

Because â†0â0 = N0 ≈ N is much larger than unity, it follows that â0â
†
0 − â†0â0 = 1 is small in

comparison to â0 and â†0 and hence â0 and â†0 may be regarded as numbers (equal to
√

N0), and
we can ignore the fact that they do not commute.

We now expand the potential energy in (10.23) in powers of the small quantities âp, â†p for
p 6= 0. The zeroth-order term is

U0

2V
a†0a

†
0a0a0 =

U0

2V
a0

4 =
U0

2V
N2

0 . (10.25)

There are no first-order terms proportional to a0
3, because they cannot be made to satisfy con-

servation of momentum. The second-order contributions are proportional to (U0/2V )N0 and are
given by

(a) p1 = p2 = 0, k 6= 0 â†kâ†−k

(b) k = −p1, p2 = 0 â†p1
âp1

(c) k = p2, p1 = 0 â†p2
âp2

(d) p1 = −p2 = −k âp1 â−p1

(e) k = p1 = 0, p2 6= 0 â†p2
âp2

(f) k = p2 = 0, p1 6= 0 â†p1
âp1

We will ignore all higher order terms, which is equivalent to ignoring the interaction between
excited particles. Hence, if we extend the above approximations to T above Tc, our approximate
Hamiltonian would reduce to the Hamiltonian for the ideal gas.

The approximate Hamiltonian can now be written as

Ĥ =
∑
p

′ p2

2m
â†pâp +

U0

2V
N2

0 +
U0

2V
N0

∑
k

′[
â†kâ†−k + âkâ−k + 4â†kâk

]
. (10.26)

The notation
∑′ denotes that the sum excludes terms with p = 0 and k = 0.

In general, we have
N = a2

0 +
∑
p

′
â†pâp = N0 +

∑
p

′
â†pâp. (10.27)

For consistency, we replace N2
0 in (10.26) by N2

0 = N2−2N
∑

p
′
â†pâp. Similarly N0 in (10.26) may

be replaced by N . The result of these replacements is that

Ĥ ≈ ĤB =
N2

2V
U0 +

∑
p

′
εpâ

†
pâp +

N

2V
U0

∑
k

′[
â†kâ†−k + âkâ−k + 2â†kâk

]
. (10.28)
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Note that HB only allows excitation of pairs of momentum k and −k from the condensate and
re-entry of such pairs into the condensate.

The approximate Hamiltonian ĤB is bilinear in â and â†. This form is similar to that of a
harmonic oscillator. This similarity suggests that we can diagonalize ĤB by making an appropriate
linear transformation of the operators â and â†. If ĤB is put into diagonal form, then ĤB would
have the same form as an ideal gas, and we could easily calculate the energy eigenvalues.

We define new operators b̂† and b̂ by

âk = uk b̂k + vk b̂†−k (10.29a)

â†k = uk b̂†k + vk b̂−k, (10.29b)

and require them to satisfy the Bose commutation relations

b̂kb̂†k′ − b̂†k′ b̂k = δkk′ and b̂kb̂k′ = b̂k′ b̂k. (10.30)

As shown in Problem 10.1, b̂† and b̂ satisfy the Bose commutation relations only if the relation
(10.31) between uk and vk is satisfied:

u2
k − v2

k = 1. (10.31)

Problem 10.1. (a) Use (10.29) to express b̂† and b̂ in terms of â† and â. (b) Show that the
commutation relations (10.30) are satisfied only if (10.31) is satisfied.

If we substitute the above expressions for â† and â into (10.28), we obtain

ĤB = E0 + ĤD + ĤI (10.32a)

where

E0 =
N2U0

2V
+

∑
k

′[
(εp +

NU0

V

)
vk

2 +
NU0

V
ukvk

]
(10.32b)

ĤD =
∑
k

′[
(εp +

NU0

V
)
(
uk

2 + vk
2
)2NU0

V
ukvk

]
b̂†kbk (10.32c)

ĤI =
∑
k

′[(
εk +

NU0

V

)(
ukvk +

1
2
vk(u2

k + v2
k)

)](
b̂†kb̂†−k + b̂kb̂−k

)
. (10.32d)

From the form of (10.32), we see that ĤB would be diagonal if ĤI = 0. This condition is satisfied
if

2
(
εk +

NU0

V

)(
ukvk + vk(u2

k + v2
k

)
= 0, (10.33)

and the relation (10.31) is satisfied. Note that we have two equations for the two unknown uk and
vk. We can satisfy the relation (10.31) automatically by letting

uk = cosh θk (10.34a)
vk = sinh θk. (10.34b)
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If we use the identities 2ukvk = 2 cosh θk sinh θk = sinh 2θk and u2
k + v2

k = cosh 2θk, we can express
(10.33) as

(εk +
NU0

V
) sinh 2θk +

NU0

V
cosh 2θk = 0, (10.35)

or
tanh 2θk = − ρU0

εk + ρU0
. (10.36)

Note that (10.36) has a solution for all k only if U0 > 0.
The solution (10.36) is equivalent to

u2
k + v2

k =
εk + ρU0

E(k)
(10.37)

and
2ukvk = − ρU0

E(k)
, (10.38)

where
E(k) =

√
εk(εk + 2ρU0). (10.39)

u2
k =

1
2
[εk + ρU0

E(k)
+ 1

]
, (10.40a)

v2
k =

1
2
[εk + ρU0

E(k)
− 1

]
. (10.40b)

If we substitute uk and vk into ĤB , we obtain

ĤB =
1
2
NρU0 +

∑
k

′[
E(k)− εk − ρU0

]
+

∑
k

′
E(k) b̂†kb̂k. (10.41)

From the form of (10.41) we see that b̂†k and b̂k are the creation and destruction operators for
quasiparticles or elementary excitations with energy E(k) obeying Bose statistics. If we replace
U0 by 4π~2a/m, we see that the quasiparticle energy is given by

E(p) =
√

c2p2 + (p2/2m)2, (10.42)

where

c =

√
4π~2ρa

m2
. (10.43)

Note that for small p, E(p) is proportional to p and hence the excitations are phonons with velocity
c.

The ground state energy E0 is given by

E0 =
1
2
NρU0 +

∑
k

′[
E(k)− εk − ρU0

]
. (10.44)
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We can replace the summation over discrete values of k by an integration over p and multiply by
V/(2π~)3. We obtain (see Huang)

E0

N
=

2πaρ

m

[
1 +

128
15

√
a3ρ

π

]
. (10.45)

Problem 10.2. Show that c is equal to the sound speed using the relation (see Reif)

c = (ρκS)−1/2, (10.46)

where κS is the adiabatic compressibility:

κS = − 1
V

(∂V

∂P

)
S

. (10.47)

The above relations can be used to express c as

c2 =
( ∂ρ

∂P

)
S

. (10.48)

At T = 0, the pressure is given by

P = −∂E0

∂V
. (10.49)

Use the above relations and (10.45) to show that the calculated speed of sound is consistent with
the phonon speed (10.43) to lowest order in (ρa3)1/2.

Problem 10.3. The number of quasiparticles of momentum p for T > 0 is given by

np =
1

eβE(p) − 1
. (10.50)

Why is the chemical potential equal to zero?

Problem 10.4. The momentum distribution of the actual particles in the gas is given by

Np = â†pâp. (10.51)

Use the relation between â†p and âp and b̂†p and b̂p, and the fact that the products b̂†pb̂†−p and
b̂−pb̂p have no diagonal matrix elements to show that

Np =
np + fp(np + 1)

1− fp
, (10.52)

where

fp =
m

4πaρ~2

[
E(p)− p2

2m
−mc2

]
. (10.53)

This result is valid only for p 6= 0. At T = 0, np = 0 for p 6= 0. Show that

Np =
m2c4

2E(p)[E(p) + p2/2m + mc2]
. (10.54)
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The number of particles with zero momentum is

N0 = 1−
∑
p

′
Np = 1− V

∫
d3p

(2π~)3
Np. (10.55)

Note that the interaction between the particles causes the appearance of particles with nonzero
momentum even at T = 0. Use (10.54) to show that

N0

N
= 1− 8

3
(
ρa3

π
)1/2. (10.56)
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