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We discuss the nature of the chemical potential by considering some simple models and simulations.
We then discuss the role of the chemical potential in understanding phase transitions with a focus
on the van der Waals equation of state. We also discuss chemical reactions and the law of mass
action.

7.1 Meaning of the chemical potential

Although the chemical potential plays a role analogous to temperature and pressure, understanding
the nature of the chemical potential is more difficult. We know that if two systems are at different
temperatures and are then placed in thermal contact, there will be a net transfer of energy from
one system to the other until the temperatures of the two systems become equal. If there is a
movable wall between two systems at different pressures, then the wall will move so as to change
the volume of each system to make the pressures equal. Similarly, if two systems are initially
at different chemical potentials and are then allowed to exchange particles, there will be a net
transfer of particles from the system at the higher chemical potential to the one at the lower
chemical potential until the chemical potentials become equal. You are asked to derive this result
in Problem 7.1.

Problem 7.1. Chemical equilibrium

Assume that two systems A and B are initially in thermal and mechanical equilibrium, but not in
chemical equilibrium, that is, TA = TB, PA = PB, but µA 6= µB. Use reasoning similar to that used
in Section 2.12 to show that particles will be transferred from the system at the higher chemical
potential to the system at the lower chemical potential. Remember that an easy way to remember
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NA ΩA(NA) ln ΩA(NA) µA/kT NB ΩB(NB) ln ΩB(NB) µB/kT ΩAΩB

1 1 0 – 9 1287 7.16 – 1287
2 9 2.20 −1.90 8 792 6.68 −0.51 7128
3 45 3.81 −1.45 7 462 6.14 −0.57 20790
4 165 5.11 −1.20 6 252 5.53 −0.65 41580
5 495 6.21 −1.03 5 126 4.84 −0.75 62370
6 1287 7.16 −0.90 4 56 4.03 −0.90 72072
7 3003 8.01 −0.81 3 21 3.05 −1.12 63063
8 6435 8.77 −0.73 2 6 1.79 −1.52 38610
9 12870 9.46 – 1 1 0 – 12870

Table 7.1: The number of states of subsystems A and B such that the composite Einstein solid
has a total number of particles N = NA + NB = 10 with EA = 8 and EB = 5. The number of
microstates of each states is determined using (4.3). Neither NA nor NB can equal zero, because
each subsystem has a nonzero energy and thus each subsystem must have at least one particle.
The quantity µ/kT in columns 4 and 8 is determined by computing the ratio −∆ln Ω/∆N , with
∆N = 1. The most probable macrostate corresponds to ÑA ≈ 6. The ratio µ/kT is the same (to
two decimal places) for both subsystems for this macrostate. The fraction of microstates associated
with the most probable macrostate is 72072/319770 ≈ 0.23, where 319770 is the total number of
microstates. This fraction will approach one as the number of particles and total energy in the
two subsystems becomes very large.

the various thermodynamic relations for µ is to start from the fundamental thermodynamic relation
in the form dE = TdS − PdV + µdN .

To gain more insight into the nature of the chemical potential we discuss two models for which
we can calculate the chemical potential explicitly, the Einstein solid and an ideal gas. In Chapter 4
we considered an Einstein solid consisting of two subsystems each with a fixed number of particles,
but with different energies such that the total energy was fixed. We found that the temperatures of
the two subsystems are equal for the energy distribution that has the largest number of microstates,
and thus is most probable.

We now consider a similar composite Einstein solid consisting of two subsystems each with a
variable number of particles such that the total number of particles is fixed, N = NA + NB. The
energies EA and EB are fixed in each subsystem. In our example we take N = NA + NB = 10,
EA = 8, and EB = 5. Table 7.1 displays the number of microstates in each subsystem and the
total number of microstates in the composite system for the possible values of NA and NB. We see
that the derivative of ln Ω with respect to the number of particles in each subsystem, which equals
−µ/kT (see (2.120), page 72), is almost equal (in our example the derivatives are equal to two
decimal places) when the total number of microstates in the composite system is a maximum. We
conclude that the quantity that becomes equal in equilibrium for this example is the ratio µ/T . In
a more realistic example it would be impossible for particles to move from one system to another
without transferring energy as well. In these systems both the temperature and chemical potential
would individually become equal at equilibrium.

For the various composite Einstein solids that we considered in Chapter 4 we found that
thermal equilibrium is achieved by energy being transferred from the hotter to the cooler subsystem.
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Figure 7.1: A container at height y connected by a tube of negligible volume to a container at
height zero.

In the present example chemical equilibrium is reached by a transfer of particles. From Table 7.1
we see that if the two subsystems are initially not in equilibrium, for example, NA = 3, then
µA/TA is less (more negative) than µB/TB. Because the system will change to maximize the total
entropy, we see that subsystem A will gain particles from subsystem B. Thus, particles will be
transfered from a subsystem with the larger (less negative) ratio µ/T to the subsystem with the
smaller value of µ/T .

Problem 7.2. Numerical calculation of the chemical potential of the Einstein solid

(a) Use Program EinsteinSolidChemicalPotential to consider an isolated Einstein solid con-
sisting of two subsystems. The program counts the number of states using the relation (4.3).
The inputs to the program are EA, EB , and N = NA + NB. Imagine that the two subsystems
are initially separated by an insulating and impermeable partition, with NA = 8, NB = 4,
EA = 15, and EB = 30. What is the initial entropy of the system? The partition is then
replaced by one that allows particles but not energy to be transferred between the two sub-
systems. Construct a table similar to Table 7.1 and show that the ratio µ/T is approximately
equal for the most probable macrostate (defined by specific values of NA and NB). Is the
entropy of this macrostate higher than the initial entropy? Then try other combinations of N ,
EA, and EB . In a more realistic problem particles could not move from one system to another
without transferring energy as well.

(b) Why is µ expected to be negative for the Einstein solid?

(c) If the amount of energy is the same in each subsystem of a composite Einstein solid, what
would be the equilibrium number of particles in each subsystem?

We next consider a model consisting of two ideal gases that are in containers at different
heights (see Fig. 7.1).1 Because we wish to characterize the containers only by their height, we
assume that each container has a very large cross-sectional area and a very small thickness such
that the volume of each container is finite. For simplicity, we also assume that both gases are at

1This model is discussed in Ralph Baierlein, Thermal Physics, Cambridge University Press (1999).
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the same temperature T and volume V . The energy ǫi of the ith particle in either container is
given by ǫi = mv2

i /2 + mgyi, where m is its mass, vi its speed, and yi its height, which is either
0 or y. The acceleration due to the gravitational field is denoted by the constant g. We use the
subscripts 0 and u to denote the lower and upper container, respectively.

The partition function for each container is a function of its volume, temperature, number of
particles, and height. From (6.25) we have that Z0(T, V, N0) is given by (see (6.25), page 299)

Z0(T, V, N0) =
V N0

N0!

(2πmkT

h2

)3N0/2

, (7.1)

where N0 is the number of particles in the lower container. Similarly, the partition function Zu for

the upper container can be written as

Zu(T, V, Nu) =
V Nu

Nu!

(2πmkT

h2

)3Nu/2

e−mgyNu/kT , (7.2)

where Nu is the number of particles in the upper container. Note the factor of e−mgyNu/kT in
(7.2).

Problem 7.3. Derive the relation (7.2).

To find the corresponding chemical potentials we use the relations F = −kT lnZ and µ =
(∂F/∂N)T,V . Hence the chemical potential µ0 for the lower container is (see (6.29))

µ0 = −kT ln
[ V

N0

(2πmkT

h2

)3/2]

, (7.3)

and the chemical potential for the upper container is given by

µu = mgy − kT ln
[ V

Nu

(2πmkT

h2

)3/2]

. (7.4)

If the two containers have the same number of particles, then the top container has the higher
chemical potential as can be seen by comparing (7.3) and (7.4). What will happen if the two
containers are connected by a tube of negligible volume so that particles may move from one
system to the other? In this case the only quantities that may vary are the number of particles in
each container. (We have assumed that they have the same temperature and volume.) Because the
number of particles of the composite system N = N0 + Nu is fixed, there is only one independent
variable which we take to be N0, which will change to make the free energy of the composite system
a minimum.

To find the total free energy we note that the partition function of the composite system is
the product of the partition function for each container because there is no interaction between
the particles in the two containers. Hence, we have

Z(T, V, N0) = Z0(T, V, N0)Zu(T, V, Nu). (7.5)

We first calculate the total free energy F = −kT lnZ, take the derivative of F with respect to N0,
and set the derivative equal to zero to find the condition for the minimum free energy. The total
free energy is (see (6.26), page 299)

F = −kTN0

[

ln
V

N0
+

3

2
ln

(2πmkT

h2

)

+ 1
]

− kTNu

[

ln
V

Nu
+

3

2
ln

(2πmkT

h2

)

+ 1 +
mgy

kT

]

. (7.6)
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We substitute Nu = N −N0, take the derivative of F with respect to N0, and set the result equal
to zero. The result is

Nu = N0e
−mgy/kT . (7.7)

The same result would be obtained if we had expressed F in terms of Nu and found ∂F/∂Nu.

Equation (7.7) relates the number of particles in each container at equilibrium and implies
that Nu < N0. Thus, if there is initially the same number of particles in each container, particles
will be transferred from the higher container to the lower one, that is, from the container at the
higher chemical potential to the one at the lower chemical potential.

Problem 7.4. The chemical potential of a simple composite system

(a) Fill in the missing steps and derive (7.7).

(b) Show that µ0 = µu when the condition (7.7) is satisfied. Thus the chemical potentials of each
part of the composite system are equal at equilibrium.

Equation (7.7) tells us how the number density varies with height assuming that the temper-
ature is independent of height which is only approximately valid in our atmosphere. (This result
was first obtained in Problem 6.48.) We can use similar considerations to show that if two fluids
are separated by a membrane with an electrical potential energy difference q∆V between them,
then the chemical potential difference between the two fluids will contain a term equal to q∆V .
Here q is the magnitude of the charge of an ion in the fluid and ∆V is the potential difference.
The transfer of ions across a cell membrane is due to the creation of a potential difference that
produces a difference in the chemical potentials and causes ions to be transferred from a region of
high chemical potential to a region of lower chemical potential.

7.2 Measuring the chemical potential in simulations

7.2.1 The Widom insertion method

Another way of gaining more insight into the meaning of the chemical potential is to think about
how we would measure it on a computer. From (2.151) and (4.102) we can write the chemical
potential as

µ =
( ∂F

∂N

)

T,V
≈ FN+1 − FN = −kT ln

ZN+1

ZN
(N ≫ 1). (7.8)

That is, the chemical potential is the change in the free energy of a system due to the addition
of a particle (in the thermodynamic limit). To understand how we can estimate the chemical
potential by a Monte Carlo simulation in the canonical ensemble we need to write µ in terms of
an appropriate average. The partition function of a N particle system is ZN =

∑

s e−βEs , where
Es is the energy of microstate s with N particles. Similarly, ZN+1 =

∑

s,r e−βEs,r , where the
sum over r is over all possible coordinates and momenta of the additional particle, and Es,r is the
energy when N particles are in the state s, and the additional particle is in state r. We define the
quantity ∆Es,r ≡ Es,r − Es, and rewrite (7.8) as

ZN+1

ZN
=

∑

s,r e−β∆Es,re−βEs

∑

s e−βEs
, (7.9)
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If we combine (7.8) and (7.9), we find

µ = −kT ln〈
∑

r

e−β∆Es,r〉, (7.10)

where the average is over all N particle states weighted by the N particle Boltzmann factor
e−βEs/

∑

s e−βEs .

For an ideal classical gas there is no interaction between the particles and thus ∆Es,r does
not depend on microstate s. Therefore the sum over s in the numerator of (7.9) cancels the sum
over s in the denominator. The sum over r becomes an integral over the position and momentum
of the added particle. The integral over the position equals the volume, and hence (7.10) reduces
to

µideal = −kT ln
[ V

N

∫

e−βp2/2m d3p

h3

]

. (7.11)

The factor of 1/N accounts for the indistinguishability of the particles. Recall that ZN ∝ 1/N !
and thus ZN+1/ZN ∝ N !/(N + 1)! = 1/(N + 1) ≈ 1/N .

Problem 7.5. Chemical potential of an ideal classical gas

Show that (7.11) leads to the usual ideal classical gas expression for µ given in (6.29).

The energy of the added particle consists of a kinetic energy term and a potential energy term.
Because the integral over the momentum degrees of freedom is independent of the inter-particle
potential for a classical system of particles, a Monte Carlo simulation of a system need only consider
the position coordinates. Hence, we need to determine only the change in the potential energy
due to an added particle. It is common to write the chemical potential as µ = µideal + µexcess,
where µideal is given in (7.11). From (7.10) we see that the “excess” contribution to the chemical
potential can be expressed as

µexcess = −kT ln〈e−β∆U 〉, (7.12)

where ∆U is the change in the potential energy when an imaginary test particle (of the same type)
is added at random to a N -particle system.

Equation (7.12) can be used to estimate the chemical potential of gases and liquids. In a
standard (Metropolis) Monte Carlo simulation of a system at a given temperature, the microstates
of an N particle system are sampled in the usual way with the desired Boltzmann probability. Then
a test particle is added periodically at a random position, the quantity e−β∆U is accumulated, and
the particle is removed. The average in (7.12) is the accumulated sum of e−β∆U divided by the
number of times a test particle was added. The addition of the test particle is virtual and it is not
actually added.2 This way of estimating µ is called the Widom insertion method.

We can use (7.12) to understand the density dependence of the chemical potential of a fluid.
Consider a fluid for which the interaction between particles consists of a strongly repulsive potential
at small particle separations and a weakly attractive potential that vanishes at large particle
separations. At low densities the test particle will likely land in a region where the inter-particle
potential is small and negative, and thus the potential energy change due to the added particle will

2In principle, the sum over r in (7.10) should be done by adding many test particles in succession at random
positions for a given microstate s. Because we sample such a small fraction of all the N particle microstates, it is
sufficient to periodically add only one particle to any particular N-particle microstate generated in the simulation.
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be small and negative (∆U < 0). In this case the exponential in (7.12) will be greater than one,
and thus the excess chemical potential will be negative. For higher densities an added particle is
more likely to land near the potential minimum, and thus ∆U is likely to be more negative. Thus
the excess chemical potential will initially decrease as the density is increased. For still higher
densities the test particle will likely land on the steeply rising positive part of the potential, and
thus ∆U will be large and positive, leading to −β∆U < 0, an exponential less than one, and thus
a positive excess chemical potential. We conclude that there is a minimum in the excess chemical
potential as a function of density.

Problem 7.6. The excess chemical potential of a Lennard-Jones fluid

Program WidomInsertionMethod implements the Widom insertion method to estimate the chem-
ical potential for a system of particles interacting with the Lennard-Jones potential. Determine
the density dependence of the excess chemical potential of a Lennard-Jones fluid. Are your results
for µexcess consistent with our qualitative arguments?

7.2.2 The chemical demon algorithm

In Sections 1.5 and 4.9 we discussed the demon algorithm and learned that the demon yields a
measure of the temperature and that the temperature controls the transfer of energy between two
systems. We now generalize the demon algorithm so that the demon carries two sacks, one for
energy and one for particles. We will find that the generalized or chemical demon algorithm gives
a measure of the chemical potential as well as the temperature, and that the chemical potential
controls the transfer of particles between two systems.

We learned in Chapter 4 that if the demon only exchanges energy with a system, then the
probability that the demon has energy Ed is given by the Boltzmann distribution. If the demon
can exchange both energy and particles with the system, then the probability P (Ed, Nd) that the
demon has energy Ed and Nd particles is given by the Gibbs distribution (see (4.142), page 219):

P (Ed, Nd) =
1

ZG
e−β(Ed−µNd), (7.13)

where ZG is the grand canonical partition function. We can think of the demon as a system that
exchanges energy and particles with a reservoir at constant T and µ.

To illustrate the nature of the chemical demon, we consider a one-dimensional system of
particles. The position and momentum variables of the system are placed in bins of width ∆x and
∆p, respectively, so that the phase space of the system is a two-dimensional lattice, with position
in one direction and momentum in the other. The chemical demon algorithm can be summarized
as follows:

1. Begin with an arbitrary initial configuration of the system with the desired total energy and
total number of particles. The N particles of the system are randomly placed on the phase
space lattice with no more than one particle on a lattice site. We set Ed = 0 and Nd = 0 for
convenience, where Ed is the energy of the demon and Nd is the number of particles held by
the demon.

2. Choose a lattice site (in phase space) at random. If there is a particle there, compute the
trial change in energy ∆E that would result if the particle were removed.
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3. If ∆E < Ed, accept the move and subtract ∆E from Ed and let Nd → Nd + 1. Otherwise
reject the move, but include the unchanged configuration as the new configuration. Go to
step 5.

4. If there is no particle at the lattice site and the demon has at least one particle, compute the
trial change in energy ∆E needed to add a particle. If ∆E < Ed, accept the addition and
subtract ∆E from Ed and let Nd → Nd − 1. Otherwise, retain the unchanged configuration.

5. Repeat steps 2–4 and allow the system to equilibrate before computing averages. Accumulate
data for P (Ed, Nd) after each MC step per lattice site.

Note that in this algorithm there is at most one particle at a given lattice site in phase space.

Program ChemicalDemon implements this algorithm and computes P (Ed, Nd), the probability
that the demon has energy Ed and Nd particles. From (7.13) we see that the slope of P (Ed, Nd)
versus Ed for fixed Nd is −β and the slope of P (Ed, Nd) versus Nd for fixed Ed is βµ.

To understand how the chemical demon algorithm can help us to understand the chemical
potential, we first consider how the usual demon algorithm with only energy exchanges helps us
understand the role of the temperature. Suppose that the demon is able to transfer energy into
and out of the system very easily; that is, most of its trial changes are accepted. Under what
conditions would the acceptance probability be close to one? What can we say about the slope of
lnP (Ed) versus Ed? The answer is that the slope would be shallow (and negative) because many
demon energies would have nearly the same probability. We can also say that the temperature is
high because the demon almost always has sufficient energy to give to the system when necessary.
If instead the temperature is low, then a similar argument leads us to expect a steep negative
slope for lnP (Ed) versus Ed. This behavior is independent of the size of the system because the
exchange of energy only affects a small part of the system. This independence of the size of system
explains why temperature is an intensive quantity.

Now consider the chemical demon and assume that it transfers particles only. From (7.13) we
see that the ratio −µ/kT plays the analogous role for particle transfers as 1/kT does for energy.
Because −µ/kT depends on both µ and T , it is more subtle to understand how the chemical
potential behaves independent of the temperature. For this reason we will assume in the following
that the demon has already made a sufficient number of energy transfers so that the demon and
the system are in thermal equilibrium.

For simplicity, consider a one-dimensional ideal gas, and let’s see what we can infer by thinking
about the demon’s particle exchanges with the system. We know that the chemical potential is
negative, which means that the slope of lnP (Nd) versus Nd is negative, and the probability of the
demon having Nd particles decreases as Nd increases (for a given value of Ed). To understand this
behavior consider the occupancy of the sites in two-dimensional phase space. Because the total
energy E is fixed, particles will occupy sites with momentum between ±

√
2mE. If the system is

dilute, then there will be many empty cells in phase space with near zero momentum. If a particle
from one of the higher momentum states is removed by the demon, it will give the demon lots of
energy which can be used to return particles to the system at lower momentum sites. It will then be
very difficult for the demon to add a particle to a high momentum state. Thus, the probability of
the demon having Nd particles will decrease with Nd and the chemical potential must be negative.
This argument illustrates how entropy arguments (which depends on the vast number of cells or
sites in phase space) are essential for understanding the demon probabilities.
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Problem 7.7. The chemical potential of an one-dimensional ideal gas

Program ChemicalDemon implements the chemical demon algorithm in which a demon exchanges
particles (and energy) with a system of interest.

(a) Assume that the chemical demon exchanges energy and particles with a one-dimensional ideal
classical gas. Choose the default parameters N = 100, E = 200, and L = 100, where N is the
number of particles, E is the total energy of the system, and L is the length of the box. We
use units such that the area of a cell in phase space is ∆x∆p = 1. We also choose units such
that m = 1/2 so that the energy of a particle is given by ǫ = p2. These choices imply that the
momentum and energy are integers. The maximum momentum of a particle is pmax =

√
E.

The N particles are initially randomly placed in the cells of the phase space lattice with no
more than one particle in a cell such that the desired total energy is obtained. For convenience
we set the initial demon energy Ed = 0 and particle number Nd = 0. Run the simulation and
discuss the qualitative features of the positions of the particles in phase space. Where are most
of the particles located? Are there particles that have the same position? Run the simulation
for different values of E, but the same values for the other parameters. Describe what you see
in the phase space plots and what these plots indicate about the behavior of the particles in
the simulation.

(b) Explain why the simulation in part (a) is identical to a simulation of an ideal gas in the
semiclassical limit. Show that the chemical potential is given by

µ = −T ln[(L/N)(πT )1/2]. (7.14)

(Remember that our choice of units is equivalent to ∆x∆p = 1).

(c) Use the same parameters as in part (a) and run for about 200 Monte Carlo steps per particle
(mcs) for equilibration. Then click Zero Averages and average over at least 1000mcs. (You
can speed up the simulation by increasing the steps per display to 10 or 100.) After the
simulation is stopped, click the Calculate button to compute the demon energy and particle
number distributions. The plot of lnP (Ed, Nd = 1) versus Ed should be approximately linear
for small Ed. The inverse slope is related to the temperature. The plot of lnP (Ed = 1, Nd)
versus Nd should give a slope equal to µ/T . Compare your Monte Carlo results with the exact
result that you found in part (b).

∗Problem 7.8. The effects of interparticle interactions

Consider the effects of including interactions between the particles in a dilute classical gas. If the
interaction is a hard core, no two particles can have the same position. This interaction makes it
more difficult for the demon to return particles to the system, and we expect the chemical potential
to be greater (less negative) than the non-interacting system at the same density.

(a) Use program ChemicalDemon and confirm the effect of including a hard core on the chemical
potential of the system.

(b) If we include an attractive interaction between particles that are nearest neighbors in position,
the energy of the system will be lowered for some particle additions, thus giving the demon
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Liquid

Gas

Figure 7.2: Gas-liquid phase separation in the presence of gravity. What would you observe in the
absence of gravity? The two phases are in a closed container.

more energy and making it easier for the demon to find places in phase space to add particles.
The result is a lowering of the chemical potential compared to the hard core system. Show
that this trend can be observed in your simulations.

Our discussion suggests that the relative ease or difficulty for the demon in exchanging particles
with a system is a measure of the system’s chemical potential. Just as the temperature is not a
measure of energy, but rather a measure of the ability to transfer energy, the chemical potential is
not a measure of an additional particle’s energy, but rather a measure of the ease of transferring
particles.

7.3 Phase Equilibria

Our considerations so far have been for homogeneous systems consisting of a single species. There
are many circumstances for which a system separates into two homogeneous parts. The simplest
example is of a closed container filled with the gas and liquid phases of the same substance (see
Figure 7.2).

The particular phase chosen by a system depends on the pressure and temperature. For
example, water is a liquid at room temperature and atmospheric pressure, but if it is cooled below
273.15K at atmospheric pressure, it will eventually solidify and become ice. And if water is heated
above 373.15K it will vaporize.3 At each of these temperatures, water undergoes dramatic changes
in its properties, and we say that a phase transition occurs.

The existence of distinct phases is the result of intermolecular interactions, which are the
same in all phases. The interaction of a water molecule, H2O, with another water molecule is the
same whether the molecule is in ice or in vapor. Why is the effect of the interactions so different
macroscopically? The answer is the existence of cooperative effects, which we discussed briefly in
Section 5.6.1 and will discuss in more detail in Chapters 8 and 9.

7.3.1 Equilibrium conditions

In some cases a system exists in only one phase, and in others two phases can coexist. For
example, liquid water in equilibrium with its vapor inside a closed container is an example of two

3If you were to place a thermometer in perfectly pure boiling water, the thermometer would very likely not read
100◦C. Superheating is almost inevitable. See the text by Bohren and Albrecht.
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phase coexistence. For simplicity, we will consider the conditions for equilibrium between two
phases of a substance consisting of a single type of molecule.

We can understand the coexistence of phases by treating each phase as a separate subsystem.
We know that for two systems A and B in thermal equilibrium, their temperatures must be equal:

TA = TB. (7.15)

We also have shown that the pressure of the two phases must be equal in mechanical equilibrium,

PA = PB, (7.16)

because the forces exerted by the two phases on each other at their surface of contact must be
equal and opposite.

We will show in the following that because the number of particles NA and NB in each phase
can vary, the chemical potentials of the two phases must be equal:

µA(T, P ) = µB(T, P ). (7.17)

We have written µ(T, P ) because the temperature and pressure of the two phases are the same.

Because µ(T, P ) = g(T, P ) (see (2.156), page 78), where g is the Gibbs free energy per particle,
we can also write the equilibrium condition (7.17) as

gA(T, P ) = gB(T, P ). (7.18)

We now derive the equilibrium condition (7.17) or (7.18). Because T and P are well defined
quantities for a system of two phases, the natural thermodynamic potential is the Gibbs free energy
G. Let Ni be the number of particles in phase i and gi(T, P ) be the Gibbs free energy per particle
in phase i. Then G can be written as

G = NAgA + NBgB. (7.19)

The total number of particles is constant:

N = NA + NB = constant. (7.20)

Suppose we let NA vary. Because G is a minimum in equilibrium (for a given value of T and P ),
we have

dG = 0 = gAdNA + gBdNB = (gA − gB)dNA, (7.21)

where dNB = −dNA. Hence, we find that a necessary condition for equilibrium is gA(T, P ) =
gB(T, P ).

7.3.2 Simple phase diagrams

A typical phase diagram for a simple substance is shown in Figure 7.3(a). The lines represent the
phase coexistence curves between the solid and liquid phases, the solid and vapor phases, and the
liquid and vapor phases. The condition gA = gB = gC for the coexistence of all three phases leads
to a unique temperature and pressure that defines the triple point. This unique property of the
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Figure 7.3: (a) Sketch of a typical phase diagram of a simple substance. The phase diagram shows
the boundaries or coexistence curves between the solid, liquid, and gas phases. All three phases
coexist at the triple point. For temperature and pressures above the critical point it is not possible
to distinguish between a gas and a liquid, and the substance is known as a supercritical fluid.
(b) Phase diagram of carbon dioxide with the pressure in pascals and the temperature in kelvin.
The logarithm of the pressure is plotted so that the wide range of pressures can be shown. Note
the positive slope of the melting curve with pressure. The triple point is at Ttp = 216.6K and
Ptp = 5.2 × 105 Pa. Not shown is the critical point at Tc = 304.1K and Pc = 7.38 × 106 Pa. At
atmospheric pressure and room temperature the solid and liquid phases are not stable, and thus a
piece of dry ice (solid CO2) will evaporate directly into a gas. (c) The phase diagram of water. Note
the negative slope of the melting curve with pressure. For water Ttp = 273.16K, Ptp = 611.66Pa,
Tc = 647.31K, and Pc = 22.106× 106 Pa. The information for CO2 and H2O is from Glasser.

triple point makes the triple point of water a good choice for a readily reproducible temperature
reference point. If we move along the liquid-gas coexistence curve toward higher temperatures, the
two phases become more and more alike. At the critical point, the liquid-gas coexistence curve
ends, and there is no longer a distinction between a gas and a liquid. Note that a system can cross
the phase boundary from its solid phase directly to its vapor without passing through the liquid
phase, a transformation known as sublimination. important commercial process that exploits this
transformation is freeze drying.

The condition (7.17) (or (7.18)) for the coexistence of two phases implies that two phases
cannot be in equilibrium with each other at all temperatures and pressures. If two phases of a
substance coexist, only T or P can be chosen freely, but not both. For example, if liquid water is
in equilibrium with its vapor, then the pressure of the water equals the vapor pressure, which is a
unique function of the temperature. If the pressure is increased above the vapor pressure, the vapor
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Figure 7.4: Derivation of the Clausius-Clapeyron equation.

will condense. If the pressure is decreased below the vapor pressure, the liquid will evaporate.

Suppose that a fraction x of the particles is in phase A and a fraction 1− x of the particles is
in phase B. For values of T and P on the phase boundary where gA = gB, the Gibbs free energy
is equal to G = xNgA + (1 − x)NgB = NgA = NgB, which is independent of x. Hence for values
of P and V on the phase boundary, the two phases can coexist in equilibrium in any proportion.
The locus of points (T, P ) such that gA = gB is called the phase coexistence curve.

The quantity gi is a well-defined function that is characteristic of the particular phase i. If
T and P are such that gA < gB, then the minimum value of G corresponds to all N particles
in phase A, G = NgA, and this phase is said to be stable. If T and P are such that gA > gB,
then the minimum value of G corresponds to all N particles in phase B so that G = NgB. If, for
example, the values of T and P correspond to the stable phase being a gas, then a rapid quench of
the temperature to a value such that the liquid phase becomes stable, might lead to the gas phase
becoming metastable. In this case we say that the gas is supercooled. The system would remain in
the gas phase for some time until spontaneous density fluctuations drive the system to the stable
liquid phase.

7.3.3 Clausius-Clapeyron equation

We now show that the equilibrium condition (7.18) leads to an equation for the slope of the phase
coexistence curve. Consider two points on the phase coexistence curve, for example, one point at
T, P and a nearby point at T +∆T and P +∆P (see Figure 7.4). The equilibrium condition (7.18)
implies that gA(T, P ) = gB(T, P ) and gA(T + ∆T, P + ∆P ) = gB(T + ∆T, P + ∆P ). If we write
gi(T + ∆T, P + ∆P ) = gi(T, P ) + ∆gi, we have

∆gA = ∆gB, (7.22)
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or using (2.154)
− sA∆T + vA∆P = −sB∆T + vB∆P, (7.23)

where si is the entropy per particle and vi is the volume per particle in phase i. From (7.23) we
have

dP

dT
=

sB − sA

vB − vA
=

∆s

∆v
. (7.24)

Thus, the slope of the coexistence curve at any point on the curve is equal to the ratio of the
differences between the entropy and the volume as the curve is crossed at that point. For N
particles we have ∆S = N∆s and ∆V = N∆v, and hence we can write (7.24) as

dP

dT
=

∆S

∆V
. (7.25)

From the relation (∂E/∂V )T = T (∂S/∂V )T − P in (2.196) we can write

T
∂S

∂V
=

∂E

∂V
+ P. (7.26)

At the phase coexistence curve for a given T and P we have

T
SB − SA

VB − VA
=

EB − EA

VB − VA
+ P, (7.27)

or
T (SB − SA) = (EB − EA) + P (VB − VA). (7.28)

Because the enthalpy H = U + PV , it follows that

L ≡ T (SB − SA) = HB − HA. (7.29)

Thus we can write (7.25) as

dP

dT
=

L

T (VB − VA)
. (Clausius-Clapeyron equation) (7.30)

The relation (7.30) is called the Clausius-Clapeyron equation. It relates the slope of the phase
coexistence curve at the point T, P to the enthalpy change or latent heat L,4 the temperature at
the phase boundary, and difference in the volumes of the two phases.

It usually is convenient to work with specific values of L and V , which we denote as ℓ and v,
and to write (7.30) as

dP

dT
=

ℓ

T (vB − vA)
. (7.31)

The energy ℓ required to melt a given amount of a solid is the enthalpy of fusion.5 The
enthalpy of fusion is related to the difference in the enthapies of the liquid and the solid phase and
is given by

ℓfusion = hliquid − hsolid = T (sliquid − ssolid), (7.32)

4The term latent heat is a relic from the time it was thought that there were two kinds of heat: sensible heat,
the kind you can feel, and latent heat, the kind you cannot.

5The more common name is latent heat of fusion.
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where T is the melting temperature at the given pressure. Similarly, the equilibrium of a gas and
liquid leads to the enthalpy of vaporization

ℓvaporization = hgas − hliquid. (7.33)

The enthalpy of sublimation associated with the equilibrium of gas and solid is given by

ℓsublimation = hgas − hsolid. (7.34)

For most substances the slope of the solid-liquid coexistence curve is positive. The Clausius-
Clapeyron equation shows that this positive slope is due to the fact that most substances expand
on melting and therefore have ∆V > 0. Water is an important exception and contracts when it
melts. Hence, for water the slope of the melting curve is negative (see Figure 7.3(c)).

Example 7.1. Pressure dependence of the melting temperature of ice

Solution. Consider the equilibrium between ice and water as an example of the pressure dependence
of the melting temperature of ice. The enthalpy of fusion of water at 0◦C is

ℓfusion = 3.35 × 105 J/kg. (7.35)

The specific volumes in the solid and liquid phase are

vsolid = 1.09070× 10−3 m3/kg (7.36a)

vliquid = 1.00013× 10−3 m3/kg, (7.36b)

so ∆v = vliquid − vsolid = −0.0906 × 10−3 m3/kg. If we substitute these values of ℓ and ∆v in
(7.31), we find

dP

dT
= − 3.35 × 105

273.2× (9.06 × 10−5)
= −1.35× 107 Pa/K. (7.37)

From (7.37) we see that an increase in pressure of 1.35 × 107 Pa (133 atm) lowers the melting
temperature of ice by 1◦C. ♦

The lowering of the melting point of ice under pressure is responsible for the motion of glaciers.
The deeper parts of a glacier melt under the weight of ice on top allowing the bottom of a glacier
to flow. The bottom freezes again when the pressure decreases.

It is sometimes said that ice skaters are able to skate freely because the pressure of the ice
skates lowers the melting point of the ice and allows ice skaters to skate on a thin film of water
between the blade and the ice. As soon as the pressure is released, the water refreezes. From
Example 7.1 we see that if the ice is at −1◦C, then the pressure due to the skates must be 135 atm
for bulk melting to occur. However, even for extremely narrow skates and a large person, the skates
do not exert enough pressure to lead to the melting of ice. For example, assume that the contact
area of the blades to be 10−4 m2 and the mass of the skater to be 100 kg. Then the pressure is
given by P = F/A = mg/A ≈ 107 Pa ≈ 100 atm. Because the temperature is frequently less than
0◦C during the winter, there must be a mechanism other than pressure-induced melting which is
responsible for ice skating. And how do we explain the slide of a hockey puck, which has a large
surface area and a small weight? The answer is the existence of surface melting, that is, there is a
layer of liquid water on the surface of ice which exists independently of the pressure of an ice skate
(see the references).
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Example 7.2. Pressure dependence of the boiling point

Because the change in the volume ∆v is always positive for the transformation of a liquid to a
gas, increasing the pressure on a liquid always increases the boiling temperature. For water the
enthalpy of vaporization is

ℓvaporization = 2.257 × 106 J/kg. (7.38)

The specific volumes in the liquid and gas phase at T = 373.15K and P = 1atm are

vliquid = 1.043 × 10−3 m3/kg (7.39a)

vgas = 1.673 m3/kg. (7.39b)

Hence from (7.31) we have

dP

dT
=

2.257 × 106

373.15× 1.672
= 3.62 × 103 Pa/K. (7.40)

♦

Example 7.3. Liquid-gas coexistence curve

The Clausius-Clapeyron equation for the vapor pressure curve can be approximated by neglecting
the specific volume of the liquid in comparison to the gas, ∆v = vgas − vliquid ≈ vgas. From (7.39)
we see that for water at its normal boiling point, this approximation introduces an error of less
than 0.1 per cent. If we assume that the vapor behaves like an ideal gas, then vgas = RT/P for
one mole of the gas. (The gas constant R = kNA, where NA is Avogadro’s number.) With these
approximations, (7.31) can be written as

dP

P
= ℓ

dT

RT 2
, (7.41)

where ℓ is the enthalpy of vaporization of one mole. If we also assume that ℓ is approximately
temperature independent, we can integrate (7.41) to find

lnP (T ) = − ℓ

RT
+ constant, (7.42)

or

P (T ) ≈ P0 e−ℓ/RT , (7.43)

where P0 is a constant. ♦

Example 7.4. Liquid-solid coexistence curve

To find an equation for the phase coexistence curve between the liquid and solid phases it is
reasonable to assume that the temperature dependence of ℓ and ∆v can be neglected. In this
approximation we can write (7.31) as

dP =
ℓ

∆v

dT

T
, (7.44)

which can be integrated to give

P = P0 +
ℓ

∆v
ln

T

T0
, (7.45)
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where T0 and P0 is a point on the phase coexistence curve. Because the volume change ∆v between
the liquid and the solid is small and the entropy change is large, the slope of the coexistence curve
in the P -T plane is very steep (see Figure 7.3). ♦

Example 7.5. The triple point of ammonia

In the vicinity of the triple point the liquid-vapor coexistence curve of liquid ammonia is given by
lnP = 24.38 − 3063/T , where the pressure is given in pascals and the temperature is in kelvins.
The vapor pressure of solid ammonia is lnP = 27.92 − 3754/T . What are the temperature and
pressure at the triple point? What are the enthalpies of sublimation and vaporization? What is
the enthalpy of fusion at the triple point?

Solution. At the triple point, Psolid = Pliquid or 24.38 − 3063/T = 27.92 − 3754/T . The solution
is T = 691/3.54 = 195.2K. The corresponding pressure is 8.7Pa. The relation (7.42), lnP =
−ℓ/RT + constant, can be used to find the enthalpy of sublimation and vaporization of ammonia
at the triple point. We have ℓsublimation = 3754R = 3.12 × 104 J/mol and ℓvaporization = 3063R =
2.55 × 104 J/mol. The enthalpy of melting satisfies the relation ℓsublimation = ℓvaporization + ℓfusion.
Hence, ℓfusion = (3.12 − 2.55)× 104 = 5.74 × 103 J/mol. ♦

7.4 The van der Waals equation of state

7.4.1 Maxwell construction

To gain more insight into the liquid-gas coexistence curve we explore some of the properties of the
van der Waals equation of state, which we repeat here for convenience:

P =
NkT

V − Nb
− aN2

V 2
, (7.46)

=
ρkT

1 − ρb
− aρ2, (7.47)

where the density ρ = N/V . It is convenient to rewrite (7.47) in terms of the dimensionless
variables

P̃ = 27
(b2

a

)

P (7.48)

T̃ =
27

8

( b

a

)

kT (7.49)

ρ̃ = 3bρ. (7.50)

The reason for the numerical factors will become clear in the following (see Problem 7.10). The
van der Waals pressure equation of state (7.47) in terms of these dimensionless variables becomes

P̃ =
8ρ̃T̃

3 − ρ̃
− 3ρ̃2, (7.51)

Note that the equation of state in terms of the dimensionless variables, P̃ , T̃ , and ρ̃ does not
depend explicitly on the material dependent parameters a and b.
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Figure 7.5: Three isotherms for a van der Waals fluid in terms of the dimensionless pressure P̃
and dimensionless density ρ̃ for the dimensionless temperatures T̃ = 1.15, 1.0, and 0.85. Note that
there is an inflection point at T̃ ≈ 1 and ρ̃ ≈ 1.

Problem 7.9. Dimensionless form of the van der Waals equation of state

Use the definitions (7.48)–(7.50) of P̃ , T̃ , and ρ̃ to derive (7.51).

We plot P̃ versus ρ̃ for various temperatures in Figure 7.5. For high temperatures P̃ is a
monotonically increasing function of ρ̃ as we would expect. For smaller T̃ there is an inflection
point at T̃ ≈ 1 and ρ̃ = 1. For values of T̃ . 1 we see that P̃ has a local minimum for nonzero
ρ̃. This behavior of the van der Waals equation of state is unphysical, and the pressure must be
a monotonically increasing function of the density for all temperatures. In other words, a small
expansion of the volume of the system should result in a decrease in the pressure. If the opposite
happened, the pressure would increase and the volume would continue to increase.

We can make this requirement more precise by considering the isothermal compressibility κ,
which is defined as (see (2.172))

κ = − 1

V

(∂V

∂P

)

T,N
=

1

ρ

( ∂ρ

∂P

)

T,N
. (7.52)

Hence, the requirement that κ > 0 is equivalent to the condition that (∂P/∂ρ)T,N > 0.6 From Fig-

ure 7.5 we see that this inequality is satisfied for T̃ > T̃c, where T̃c is the temperature corresponding

6The inequalities, κ > 0 and CV > 0, can be easily derived in the canonical ensemble (see (6.238) and (4.88)).
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to the inflection point at which

(∂P̃

∂ρ̃

)

T̃c,N
= 0 (7.53)

(∂2P̃

∂ρ̃2

)

T̃c,N
= 0. (7.54)

Problem 7.10. The critical point of the van der Waals equation of state

(a) Use (7.53) and (7.54) to show that the critical point of the van der Waals equation of state is
given by

P̃c = 1 (7.55a)

T̃c = 1 (7.55b)

ρ̃c = 1. (7.55c)

Hence, we can write the dimensionless variables T̃ , P̃ , and Ṽ as T̃ = T/Tc, P̃ = P/Pc, and
Ṽ = V/Vc. We now see why the various numerical factors were included in the definitions
(7.48)–(7.50) of P̃ , T̃ , and ρ̃.

(b) Show that

Vc

N
= 3b, (7.56a)

Pc =
a

27b2
(7.56b)

kTc =
8a

27b
. (7.56c)

(c) At what temperature does the compressibility become negative for a given value of the density?

(d) What is the value of the compressibility ratio Pc/ρkTc according to the van der Waals equation
of state? This ratio is close to ≈ 0.29 in a wide variety of systems ranging from Ne to CH4.

One of the features of the van der Waals equation of state is that it predicts the law of
corresponding states, which states that the equations of state of all fluids are identical if they are
expressed in terms of dimensionless variables relative to their value at the critical point. This
prediction holds only approximately in reality, but it is exact for the van der Waals equation of
state; that is, (7.51) is independent of the material parameters a and b.

How can we understand the different nature of the P̃ -ρ̃ diagram curves above and below Tc?
For temperatures T > Tc there is a unique value of the density for each value of the pressure.
Hence a substance at a particular temperature above Tc can pass from a gas to a liquid and vice
versa without passing through a phase transition where there would be a large change in some
thermodynamic property such as the compressibility.

What happens below Tc? From Figure 7.5 we see that for P̃ < P̃c, there are three possible
values of the density and there is a range of densities for which the system is not thermodynamically
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Figure 7.6: Plot of g̃(ρ̃) in (7.59) at T̃ = 0.9 for (a) P̃ = 0.40, (b) P̃ = 0.58, (c) P̃ = 0.647, (d)
P̃ = 0.68, and (e) P̃ = 0.80. As P̃ is increased, the density which gives the minimum value of g̃
changes from the gas phase, to the critical point where the two minima are equal, and to the liquid
phase at high density. The local minima correspond to metastable states.

stable, that is κ < 0. This instability is due to the fact that the van der Waals equation of state
for T < Tc is not exact and is not a good approximation of the behavior of P̃ (ρ̃) for a real physical
system. We will show in the following that it is possible to interpret the van der Waals phase
diagram so that it does give physically reasonable results. In particular, we will find that there is
a range of densities for which phase separation occurs and both gas and liquid coexist.

To gain more insight into the nature of the van der Waals equation of state for T̃ < T̃c, we
find the corresponding Gibbs free energy. To do so we first find the Helmholtz free energy F by
integrating the relation P = −(∂F/∂V )T , with P given by (7.46):

F = −NkT ln(V − Nb) − aN2

V
+ NkTw(T ), (7.57)

where w(T ) is an unknown function of T whose form is not needed in the following (see Prob-
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lem 7.17). Hence, the Gibbs free energy is given by

G(T, P ) = F + PV = −NkT ln(V − Nb) − aN2

V
+ PV + NkTw(T ). (7.58)

It is convenient to introduce the dimensionless Gibb’s free energy per particle g̃ = 8G/3NkTc and
rewrite (7.58) as

g̃ = −3ρ̃− 8

3
T̃ ln

(3

ρ̃
− 1

)

+ P̃ /ρ̃, (7.59)

where we have ignored terms that do not depend on ρ̃ or P̃ . The minimum of g̃ for a specific T̃
and P̃ determines the density at equilibrium. Plots of the Gibbs free energy per particle g̃(ρ̃) as a
function of ρ̃ for different values of P̃ and fixed T̃ = 0.9 are given in Figure 7.6. We see that for
P̃ = 0.40, g̃ has one minimum at ρ̃ ≈ 0.20 corresponding to the gas phase. At P̃ = 0.58 there is
a local minimum at ρ̃ ≈ 1.66 corresponding to the metastable liquid phase (a superheated liquid)
and a global minimum at ρ̃ ≈ 0.35 corresponding to the stable gas phase. At P̃ = 0.647 the two
minima are equal corresponding to the coexistence of the liquid and gas phases. For P̃ = 0.68 the
global minimum at ρ̃ ≈ 1.67 corresponds to the liquid phase and the local minimum at ρ̃ ≈ 0.48
corresponds to the supercooled gas. Finally, for P̃ = 0.80, there is only one minimum at ρ̃ ≈ 1.72
corresponding to the liquid phase.

Another way of understanding the behavior of the system for T̃ < T̃c is given in Figure 7.7.
Suppose that we prepare the system at the pressure P̃0 = 0.35 corresponding to the stable gas
phase. We then increase the pressure quasistatically keeping T̃ fixed at T̃ = 0.9. At P̃ ≈ 0.42, g̃
is multivalued, but because g̃ is a minimum for a given value of T̃ and P̃ , the system will follow
the lower curve until the point C where P̃ = 0.647 and the two curves meet. At this value of the
pressure the value of g̃ is the same for the gas and liquid phase and the two phases coexist. As
the pressure is increased further the system will follow the lower curve, and the system will be in
the liquid phase. However, if we increase the pressure quickly, the system will likely follow the
dotted curve and become a metastable gas until P̃ = 0.724, the limit of metastability.7 Similarly,
if we start the system in the stable liquid phase and reduce the pressure quickly, the system is
likely to follow the dotted curve corresponding to a metastable liquid. The system will remain in
a metastable state until a spontaneous density fluctuation takes the system to the state of lower
Gibbs free energy.

To find the pressure at which phase coexistence occurs at a given temperature we use the fact
that g(Pgas, T ) = g(Pliq, T ) and Pgas = Pliq = P on the coexistence curve. Hence, we consider
the difference g(Pliq, T ) − g(Pgas, T ) and find the pressure P for a given value of T such that the
difference is zero. We write

g(Pliq, T ) − g(Pgas, T ) =

∫ Pliq

Pgas

( ∂g

∂P

)

T
dP =

∫ Pliq

Pgas

dP

ρ
, (7.60)

where we have used the Gibbs-Duhem equation (2.158) at constant temperature

dg = dµ =
V

N
dP =

1

ρ
dP. (7.61)

7Above this pressure the system is thermodynamically unstable; that is, the compressibility becomes negative.
The pressure at which the system becomes unstable (for a given temperature) is known as the spinodal. The spinodal
is well defined only for mean-field equations of state such as the van der Waals equation.
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Figure 7.7: Plot of the dimensionless Gibbs free energy per particle g̃ as a function of P̃ at T = 0.9Tc

and fixed density. The system is metastable along the dashed curves.

We write the right-hand side of (7.60) as

∫ Pliq

Pgas

dP

ρ
=

∫ Pliq

Pgas

[

d
(P

ρ

)

− Pd
(1

ρ

)

]

(7.62a)

=
P (ρliq, T )

ρliq
− P (ρgas, T )

ρgas
+

∫ ρliq

ρgas

P (ρ)

ρ2
dρ. (7.62b)

We substitute (7.62b) into (7.60) and obtain

g(ρliq, T ) − g(ρgas, T ) =
P (ρliq, T )

ρliq
− P (ρgas, T )

ρgas
+

∫ ρliq

ρgas

P (ρ)

ρ2
dρ. (7.63)

Because g(ρgas) = g(ρliq) and P (ρgas) = P (ρliq) = P on the phase coexistence curve, (7.63) reduces
to

P

[

1

ρliq
− 1

ρgas

]

+

∫ ρliq

ρgas

P (ρ)

ρ2
dρ = 0. (7.64)

We can alternatively express (7.64) in terms of the volume per particle v = 1/ρ = V/N rather
than the density:

P
[

vliq − vgas

]

−
∫ vgas

vliq

Pdv = 0. (7.65)

The geometrical interpretation of (7.65) can be seen by looking at Figure 7.8. The values of
P , vgas, and vliq are determined by choosing the shaded areas in Figure 7.8 to have equal areas.
This way of interpreting the meaning of the van der Waals equation for T < Tc is known as the



CHAPTER 7. THE CHEMICAL POTENTIAL AND PHASE EQUILIBRIA 379

0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

v~

P
~

Figure 7.8: Maxwell equal area construction. The pressure P̃ where two phase coexistence begins
for T̃ = 0.9 is determined so that the areas above and below the horizontal line are equal. In this
case P̃ ≈ 0.647.

Maxwell construction. This construction provides a recipe for finding the equilibrium values of P ,
vliq and vgas along any isotherm at a temperature T < Tc.

*Liquid-gas coexistence curve for the van der Waals equation of state. We now use (7.65) to
find the values of ρ̃gas and ρ̃liq for a given pressure P̃ and temperature T̃ on the coexistence curve.
We write (7.51) on the coexistence curve:

P̃ =
8ρ̃gasT̃

3 − ρ̃gas
− 3ρ̃2

gas =
8ρ̃liqT̃

3 − ρ̃liq
− 3ρ̃2

liq, (7.66)

and solve (7.66) for T̃ < T̃c = 1:

T̃ =
1

8
(3 − ρ̃gas)(3 − ρ̃liq)(ρ̃gas + ρ̃liq). (7.67)

We substitute T̃ from (7.67) into the right hand side of (7.66) and find

P̃ = ρ̃gasρ̃liq

[

3 − ρ̃gas − ρ̃liq

]

. (7.68)

We next substitute P̃ from (7.51) into the integral in (7.64) and evaluate the integral:
∫ ρ̃liq

ρ̃gas

P̃ (ρ̃)

ρ̃2
dρ̃ =

∫ ρ̃liq

ρ̃gas

1

ρ̃2

[ 3ρ̃T̃

3 − ρ̃
− 3ρ̃2

]

dρ̃ (7.69a)

=
[

T̃ ln
ρ̃

3 − ρ̃
− 3ρ̃

]ρ̃liq

ρ̃gas

(7.69b)

= T̃ ln

[

ρ̃liq(3 − ρ̃gas)

ρ̃gas(3 − ρ̃liq)

]

− 3(ρ̃liq − ρ̃gas). (7.69c)
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Figure 7.9: The coexistence curve for the van der Waals equation of state as a function of the
dimensionless density ρ̃. Also plotted are three isotherms (dotted lines). For T̃ < 1 the isotherms
intersect the coexistence curve (solid line) at two points whose coordinates give the equilibrium
values of P̃ , ρ̃gas, and ρ̃liq. For T̃ = 1 the isotherm intersects the coexistence curve at one point

where P̃ = 1 and ρ̃ = ρ̃gas = ρ̃liq = 1.

Finally, we substitute P̃ from (7.68), T̃ from (7.67), and the integral in (7.69c) into (7.64) and
obtain

(ρ̃liq − ρ̃gas)(6 − ρ̃gas − ρ̃liq) =
1

8
(3 − ρ̃gas)(3 − ρliq)(ρ̃gas + ρ̃liq) ln

[

ρ̃liq(3 − ρ̃gas)

ρ̃gas(3 − ρ̃liq)

]

. (7.70)

The final result was obtained by multiplying both sides of the equation by −1, so that both sides
are positive. We next use (7.67) for a particular value of T̃ , compute ρ̃gas as a function of ρ̃liq, and
find ρ̃liq from a numerical solution of (7.70). We can then use this numerical solution in (7.67) to
obtain the coexistence curve shown in Figure 7.9.

7.4.2 *The van der Waals critical point

We learned in Chapter 5 that the behavior of the Ising model near a critical point is characterized
by power law behavior and critical exponents. In the following we will investigate the nature of
the critical point as given by the van der Waals equation of state. We will see that the gas-liquid
critical point shows similar behavior and is characterized by mean-field exponents. That is, the
van der Waals equation of state is a mean-field equation.

We have already found the values of Tc, Pc, and ρc. Suppose that we fix the pressure and the
density at their critical point values and lower the temperature starting from above Tc. Then the
critical point is where the system must first choose between being a liquid or a gas.



CHAPTER 7. THE CHEMICAL POTENTIAL AND PHASE EQUILIBRIA 381

Near the critical point we can write

ρ̃liq = ρ̃c + ∆liq = 1 + ∆liq (7.71a)

ρ̃gas = ρ̃c − ∆gas = 1 − ∆gas (7.71b)

We substitute (7.71) into (7.70) and expand each side in powers of ∆liq and ∆gas. To first order
in ∆liq and ∆gas we find that ∆liq = ∆gas. That is, the coexistence curve is symmetrical near the
critical point (see Problem 7.11). This symmetry is a special case of the empirical law of “rectilinear
diameters,” which is exact for the van der Waals equation of state and a good approximation for
real systems.

Problem 7.11. Symmetry of the van der Waals coexistence line near the critical point

Consider the van der Waals equation along the coexistence live as given by (7.70). Use (7.71)
and show that to leading order in ∆liq and ∆gas that the coexistence curve is symmetrical, that is
∆liq = ∆gas.

Next we find how the difference ρliq−ρgas goes to zero as T → Tc along the coexistence curve.

We subtract T̃c = 1 from both sides of (7.67) and expand the right-hand side in powers of ∆liq

and ∆gas and obtain

T̃ − T̃c =
1

8
(3 − ρ̃gas)(3 − ρ̃liq)(ρ̃gas + ρ̃liq) − 1 (7.72a)

=
1

8

[

(2 + ∆gas)(2 − ∆liq)(2 + ∆liq − ∆gas)
]

− 1 (7.72b)

=
[

2∆gas∆liq − ∆2
gas − 2∆2

liq

]

. (7.72c)

We then let ∆liq = ∆gas = ∆ and write (7.72c) as

T̃ − T̃c = −∆2 = −∆2
liq = −∆2

gas. (7.73)

or
ρ̃liq − ρ̃c = ρ̃c − ρ̃gas =

[

(T̃c − T̃ )
]1/2

. (7.74)

In our discussion of the critical point in the Ising model in Chapter 5 we found that the order
parameter m vanishes near Tc from below as m ∝ (Tc − T )β, where β = 1/2 in mean-field theory.
We can similarly choose the quantity ρ̃liq − ρ̃c as the order parameter of the gas-liquid critical
point. Hence, we see from (7.74) that the van der Waals theory predicts β = 1/2, a manifestation
of the mean-field nature of the van der Waals theory.

Just as we considered the divergence of the susceptibility near the Ising critical point, we now
consider the temperature dependence of the isothermal compressibility near the gas-liquid critical
point. From the definition (7.52) and the van der Waals equation of state in (7.50) we have

κ =
27b2

a

1

ρ̃

( ∂ρ̃

∂P̃

)

T,N
. (7.75)

and
∂P̃

∂ρ̃
=

24T̃

(3 − ρ̃)2
− 6ρ̃. (7.76)
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Note that if we set T̃ = T̃c = 1 and ρ̃ = ρ̃c = 1 in (7.76) we find ∂P̃/∂ρ̃ = 0, and we conclude that
the compressibility diverges at the critical point. To see how κ behaves for T̃ near T̃c we write
ρ̃ = 1 + ∆, and write

∂P̃

∂ρ̃
=

24T̃

(2 − ∆)2
− 6(1 + ∆) ≈ 3

4
∆2. (7.77)

Hence κ at ρ̃ = ρ̃c = 1 diverges as

κ ≈ ∆−2 ∝ (T̃c − T̃ )−1, (7.78)

where the dependence on (T̃c − T̃ ) is given in (7.74). Note that the (isothermal) compressibility κ
and the (zero-field) magnetic susceptibility χ both diverge at the critical point with the exponent
γ = 1 as predicted by the van der Waals equation of state and mean-field theory.

7.5 *Chemical Reactions

Consider a chemical reaction such as the production of water from hydrogen and oxygen,

2H2 + O2 ⇔ 2H2O. (7.79)

The symbol ⇔ indicates that the reaction can go either way depending on the concentration of
each molecular species and the temperature. Equation (7.79) says that it takes two molecules of
hydrogen and one molecule of oxygen to make two molecules of water. We rewrite (7.79) in the
standard form

− 2H2 − O2 + 2H2O = 0, (7.80)

or more generally
− ν1N1 − ν2N2 + ν3N3 = 0, (7.81)

where N1 is the number of hydrogen molecules, N2 is the number of oxygen molecules, and N3 is
the number of water molecules. The stoichiometric coefficients are ν1 = −2, ν2 = −1 and ν3 = 2.
The (arbitrary) convention is that νi is positive for product molecules and negative for reactant
molecules.

Imagine we place hydrogen, oxygen, and water in a closed container and allow them to react,
perhaps by supplying a spark. Some of the hydrogen and oxygen will be converted to water,
such that the number of hydrogen molecules is reduced and becomes twice that of oxygen, and
the number of water molecules that is produced will be the same as the reduction of hydrogen
molecules. Hence we can write

− ν1dN1 − ν2dN2 − ν3dN3 = 0. (7.82)

We can now determine the equilibrium conditions. We begin with the generalization of (2.154)
to many kinds of molecules:

dG = −SdT + V dP +
∑

i

µidNi, (7.83)
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where µi is the chemical potential of molecules of type i. We know that the Gibbs free energy will
be a minimum in equilibrium for a given pressure and temperature. The equilibrium condition
dG = 0 yields (for given values of P and T )

0 =
∑

i

νiµi. (7.84)

The condition for chemical equilibrium for the reaction in (7.80) is

2µH2
+ µO2

= 2µH2O. (7.85)

If the system is not in chemical equilibrium, then the sum on the right-hand side of (7.84) will
not vanish. If the sum is negative, then the reaction proceeds spontaneously toward the products
(the molecules on the right-hand side of the reaction equation); if it is positive, the reaction
proceeds toward the reactants.

To find the relative concentrations of each type of molecule in equilibrium, we need to know
how the chemical potential of each type of molecule depends on its concentration. For simplicity,
we assume that the different molecules form a dilute gas which can be approximated as ideal. The
reaction takes place in a closed container of volume V at temperature T . For such an idealized
system thermodynamic quantities such as the mean energy and pressure are additive. For example,
the total pressure is given by

∑

i Pi, where Pi is the pressure that would be exerted by the gas of
type i if it was in the container all by itself. If we assume that the chemical potential of the ith
type depends only on the number of molecules of that type and not on the number of molecules
of other types in the container, then the chemical potential for molecules of type i is given by (see
(6.115))

µi(T, V, Ni) = −kT ln
[ V

Ni

(2πmikT

h2

)3/2]

= −kT ln
[V

N

N

Ni

(2πmikT

h2

)3/2]

. (7.86)

If we replace V/N by kT/P and let ni = Ni/N , we can rewrite (7.86) as

µi(T, P, ni) = −kT ln
[kT

P

(2πmikT

h2

)3/2]

− kT lnni, (7.87)

which we write as
µi(T, P, ni) = µ

(0)
i (T, P ) − kT lnni, (7.88)

where µ
(0)
i (T, P ) is the chemical potential of a pure system consisting of molecules of type i at

temperature T and pressure P . The assumption that the chemical potential of the ith type depends
only on the fraction of the ith type present, and not on the fractions of the other types does not
hold in general. This assumption is applicable when the types of molecules that are mixed are
chemically similar, in dilute solutions that do not involve electrolytes, or in mixtures of gases at
low pressures or high temperatures.

We combine (7.84) and (7.88) to obtain

∑

i

µ
(0)
i (T, P )νi = −kT lnK, (7.89)
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where the equilibrium constant K is defined by

K ≡
∏

i

(ni)
νi . (7.90)

For example, the equilibrium constant K for the reaction in (7.79) is

K =
(nH2O)2

(nH2
)2nO2

. (7.91)

The law of mass action states that if the system is in equilibrium at a given temperature and
pressure, then the ratio on the right-hand side of (7.91) is a constant. Given the chemical potentials

µ
(0)
i (T, P ) we can determine the equilibrium constant and predict the equilibrium concentrations.

How can the law of mass action be used? Consider the same example, but suppose that the
concentrations of the various molecules are initially not in equilibrium. The initial reaction ratio
is given by

Q =
(n

(i)
H2O)2

(n
(i)
H2

)2n
(i)
O2

, (7.92)

where the initial concentrations n(i) are arbitrary. If Q > K, then the system will produce more
reactants nH2

and nO2
. If Q < K, then the system will produce more product or water in this

case.

We can also find the equilibrium concentration of the reactants and products given the initial
arbitrary concentrations of just the reactants. Let x be the final equilibrium concentration of
water. Then from (7.91) we have

K =
x2

(n
(i)
H2

− x)2(n
(i)
O2

− x)
, (7.93)

where n
(i)
H2

−x and n
(i)
O2

−x are the equilibrium concentrations of the reactants. We can solve (7.93)
for x to obtain the equilibrium concentrations of the reactants and products.

To determine how the equilibrium constant depends on T and P we need to know how the
chemical potentials of the pure substances change with T and P . We know that the chemical
potential is the Gibbs free energy per particle, which is related to the enthalpy by

g = µ = h − Ts, (7.94)

where lower case indicates an intensive quantity. From the Gibbs-Duhem equation (2.158) we have
that s = −(∂µ/∂T )P , and thus (7.94) becomes

µ = h + T
( ∂µ

∂T

)

P
, (7.95)

We rearrange terms and divide by T 2 and obtain

− µ

T 2
+

1

T

( ∂µ

∂T

)

P
= − h

T 2
, (7.96)
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which can be rewritten as
∂

∂T

( µ

T

)

P
= − h

T 2
, (7.97)

Check (7.97) by taking derivatives and obtaining (7.96).

If the form for the chemical potential given in (7.88) is applicable, we can divide (7.87) by T ,
take the temperature derivative and use (7.97), to find

(∂ lnK

∂T

)

P,{ni}
=

1

kT 2

∑

i

νih
(0)
i , (7.98)

where h
(0)
i is the specific enthalpy of the pure ith substance. Similar calculations lead to

(∂ lnK

∂P

)

T,{ni}
= − 1

kT

∑

i

νiv
(0)
i , (7.99)

which gives us the change in K with pressure in terms of the specific volumes v
(0)
i . If there is

sufficient empirical data for the enthalpies and volumes, we can determine K at any temperature
and pressure.

If the right-hand side of (7.98) is positive, the reaction is endothermic, which means that the
reaction needs energy to produce the products. This energy goes into forming chemical bonds,
another form of energy distinct from the kinetic energy of the molecules and the potential energy
of interaction between the molecules. If we add energy to the system by heating, (7.98) indicates
that lnK and thus K will increase, which will consume some of the added energy, which in turn will
cool the system. Similar reasoning implies that if the reaction is exothermic (releases energy when
producing products), then increasing the temperature will decrease the amount of the products
consuming energy and thus cooling the system. Cooling an exothermic system will result in energy
being produced by the reactions so as to oppose the cooling. In either case the system’s behavior
after a change in temperature is to oppose the change. Analogous behavior occurs for pressure
changes. If we increase the pressure and the right-hand side of (7.99) is positive, the reactants will
have more volume than the products (νi is negative for reactants and positive for products), and
K will increase. An increase in K leads to more products, which in turn lowers the volume thus
decreasing the pressure. In either case the system opposes the changes. This general rule is called
Le Châtelier’s principle and is analogous to Lenz’s law in magnetism.

Problem 7.12. Producing ammonia

Consider the exothermic reaction that produces ammonia:

N2 + 3H2 ⇔ 2NH3. (7.100)

(a) Use Le Châtelier’s principle to determine whether an increase in the temperature will lead to
an increase or decrease in the amount of ammonia.

(b) Assume that the reactants and products in (7.100) are gases. Use Le Châtelier’s principle to
determine whether increasing the pressure will produce more or less ammonia.
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Vocabulary
chemical equilibrium

phase coexistence curve, phase diagram

triple point, critical point

Clausius-Clapeyron equation

enthalpy of fusion, vaporization, and sublimation

metastable state, Maxwell construction

law of mass action

Additional Problems

Problem 7.13. Climb every mountain

Use the result (7.40) to estimate the boiling temperature of water at the height of the highest
mountain in your geographical region.

Problem 7.14. Change of boiling temperature

A particular liquid boils at 127◦C at a pressure of 1.06 × 105 Pa. Its enthalpy of vaporization is
5000J/mol. At what temperature will it boil if the pressure is raised to 1.08 × 105 Pa?

Problem 7.15. Approximate height of a hill

A particular liquid boils at a temperature of 105◦C at the bottom of a hill and at 95◦C at the top
of the hill. The enthalpy of vaporization is 1000J/mol. What is the approximate height of the
hill?

∗Problem 7.16. Freezing of He4

He4 exists in liquid form at temperatures below 4.2K at atmospheric pressure and remains liquid
down to zero temperature; helium solidifies only for pressures greater than approximately 25 ×
102 Pa. An interesting feature of the liquid-solid coexistence curve is that the melting pressure is
reduced slightly from its value at T = 0K by approximately 20Pa at its minimum at T = 0.8K.
We will see that a simple model of the liquid and solid phases of He4 can explain this minimum.

(a) The properties of liquid He4 are dominated by quantized sound waves (known as phonons)
which satisfy the dispersion relation ǫ = ck, where c is the speed of sound. Calculate the
contribution of these modes to the heat capacity of the liquid at low temperatures.

(b) Calculate the low temperature heat capacity of solid He4 in terms of the longitudinal and
transverse sound speeds cℓ and ct.

(c) Use your heat capacity results for the liquid and solid to calculate the entropy difference
(per particle) sliquid − ssolid assuming a single sound speed c ≈ cℓ ≈ ct and approximately
equal volumes per particle vliquid ≈ vsolid ≈ v. Which phase has the higher entropy at low
temperatures?
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(d) Assume a small temperature-independent volume difference ∆v = vliquid − vsolid and calculate
the form of the coexistence curve. To explain the reduction of the melting pressure, which
phase must have the higher density? (This problem is adapted from Mehran Kardar, Statistical

Physics of Particles, Cambridge University Press (2007), p. 209.)

Problem 7.17. Determination of the function w(T )

Because we are interested in the pressure dependence of G for a given temperature, we need not
know the function w(T ) in (7.57). For completeness determine the form of w(T ) from the relation
E = (∂(βF )/∂β)V and the van der Waals energy equation of state (see (2.24))

E =
3

2
NkT − a

N2

V
. (7.101)

Problem 7.18. Calculation of the critical exponent δ

We can calculate the critical exponent δ predicted by the van der Waals equation of state by taking
T = Tc and determining how the order parameter depends on the pressure difference P̃ − P̃c. From
(7.51) we have

P̃ − P̃c =
8ρ̃T̃c

3 − ρ̃
− 3ρ̃2 − 1. (7.102)

Let ρ̃ = ρ̃c + ∆ = 1 + ∆ and T̃c = 1, and show that

ρ̃ − ρ̃c ∼
[

(P̃ − P̃c)]
1/3, (7.103)

by placing all the terms in (7.102) over a common denominator. What is the value of δ and how
does it compare to the value predicted by mean-field theory?
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