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We apply the general formalism of statistical mechanics to systems of many particles and discuss the
semiclassical limit of the partition function, the equipartition theorem for classical systems, and
the general applicability of the Maxwell velocity distribution. We then consider noninteracting
quantum systems and discuss the single particle density of states, the Fermi-Dirac and Bose-
Einstein distribution functions, the thermodynamics of ideal Fermi and Bose gases, blackbody
radiation, and the specific heat of crystalline solids among other applications.

6.1 The Ideal Gas in the Semiclassical Limit

We first apply the canonical ensemble to an ideal gas in the semiclassical limit. Because the
thermodynamic properties of a system are independent of the choice of ensemble, we will find the
same thermal and pressure equations of state as we found in Section 4.5. Although we will not
obtain any new results, this application will give us more experience in working with the canonical
ensemble and again show the subtle nature of the semiclassical limit. In Section 6.6 we will derive
the classical equations of state using the grand canonical ensemble without any ad hoc assumptions.

In Sections 4.4 and 4.5 we derived the thermodynamic properties of the ideal classical gas1

using the microcanonical ensemble. If the gas is in thermal equilibrium with a heat bath at
temperature T , it is more natural and convenient to treat the ideal gas in the canonical ensemble.
Because the particles are not localized, they cannot be distinguished from each other as were the
harmonic oscillators considered in Example 4.3 and the spins in Chapter 5. Hence, we cannot
simply focus our attention on one particular particle. The approach we will take here is to treat
the particles as distinguishable, and then correct for the error approximately.

As before, we will consider a system of noninteracting particles starting from their fundamental
description according to quantum mechanics. If the temperature is sufficiently high, we expect

1The theme music for this section can be found at <www.classicalgas.com/> .
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that we can treat the particles classically. To do so we cannot simply take the limit ~ → 0
wherever it appears because the counting of microstates is different in quantum mechanics and
classical mechanics. That is, particles of the same type are indistinguishable according to quantum
mechanics. So in the following we will consider the semiclassical limit and the particles will remain
indistinguishable even in the limit of high temperatures.

To take the semiclassical limit the mean de Broglie wavelength λ of the particles must be
smaller than any other length in the system. For an ideal gas the only two lengths are L, the linear
dimension of the system, and the mean distance between particles. Because we are interested in
the thermodynamic limit for which L ≫ λ, the first condition will always be satisfied. As shown
in Problem 6.1, the mean distance between particles in three dimensions is ρ−1/3. Hence, the
semiclassical limit requires that

λ≪ ρ−1/3 or ρλ
3 ≪ 1. (semiclassical limit) (6.1)

Problem 6.1. Mean distance between particles

(a) Consider a system of N particles confined to a line of length L. What is the definition of
the particle density ρ? The mean distance between particles is L/N . How does this distance
depend on ρ?

(b) Consider a system of N particles confined to a square of linear dimension L. How does the
mean distance between particles depend on ρ?

(c) Use similar considerations to determine the density dependence of the mean distance between
particles in three dimensions.

To estimate the magnitude of λ we need to know the typical value of the momentum of a
particle. For a nonrelativistic system in the semiclassical limit we know from (4.65) that p2/2m =
3kT/2. (We will rederive this result more generally in Section 6.2.1.) Hence p2 ∼ mkT and

λ ∼ h/

√

p2 ∼ h/
√
mkT . We will find it is convenient to define the thermal de Broglie wavelength

λ as

λ ≡
( h2

2πmkT

)1/2

=
(2π~

2

mkT

)1/2

. (thermal de Broglie wavelength) (6.2)

This form of λ with the factor of
√

2π will allow us to express the partition function in a convenient
form (see (6.11)).

The calculation of the partition function of an ideal gas in the semiclassical limit proceeds
as follows. First, we assume that λ ≪ ρ−1/3 so that we can pick out one particle if we make the
additional assumption that the particles are distinguishable. (If λ ∼ ρ−1/3, the wave functions of
the particles would overlap.) Because identical particles are intrinsically indistinguishable, we will
have to correct for the latter assumption later.

With these considerations in mind we now calculate Z1, the partition function for one particle,
in the semiclassical limit. As we found in (4.40), the energy eigenvalues of a particle in a cube of
side L are given by

ǫn =
h2

8mL2
(nx

2 + ny
2 + nz

2), (6.3)
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where the subscript n represents the set of quantum numbers nx, ny, and nz, each of which can
be any nonzero, positive integer. The corresponding partition function is given by

Z1 =
∑

n

e−βǫn =

∞
∑

nx=1

∞
∑

ny=1

∞
∑

nz=1

e−βh2(nx
2+ny

2+nz
2)/8mL2

. (6.4)

Because the sum over each quantum number is independent of the sums, we can rewrite (6.4) as

Z1 =
[

∞
∑

nx=1

e−α2nx
2
][

∞
∑

ny=1

e−αny
2
][

∞
∑

nz=1

e−αnz
2
]

= S3, (6.5)

where

S =

∞
∑

nx=1

e−α2nx
2

. (6.6)

and

α2 =
βh2

8mL2
=
π

4

λ2

L2
, (6.7)

It remains to evaluate the sum over nx in (6.6). Because the linear dimension L of the container
is of macroscopic size, we have λ ≪ L and α in (6.6) is much less than one. Hence because the
difference between successive terms in the sum is very small, we can convert the sum in (6.6) to
an integral:

S =

∞
∑

nx=1

e−α2nx
2

=

∞
∑

nx=0

e−α2nx
2 − 1 →

∫ ∞

0

e−α2n2
x dnx − 1. (6.8)

We have accounted for the fact that the sum over nx in (6.6) is from nx = 1 rather than nx = 0.
We next make a change of variables and write u2 = α2n2

x. We have that

S =
1

α

∫ ∞

0

e−u2

du − 1 = L
(2πm

βh2

)1/2

− 1. (6.9)

The Gaussian integral in (6.9) gives a factor of π1/2/2 (see Appendix A). Because the first term
in (6.9) is order L/λ≫ 1, we can ignore the second term, and hence we obtain

Z1 = S3 = V
(2πm

βh2

)3/2

. (6.10)

The result (6.10) is the partition function associated with the translational motion of one particle
in a box. Note that Z1 can be conveniently expressed as

Z1 =
V

λ3
. (6.11)

It is straightforward to find the mean pressure and energy for one particle in a box. We take
the logarithm of both sides of (6.10) and find

lnZ1 = lnV − 3

2
lnβ +

3

2
ln

2πm

h2
. (6.12)
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The mean pressure due to one particle is given by

p =
1

β

∂ lnZ1

∂V

∣

∣

∣

T,N
=

1

βV
=
kT

V
, (6.13)

and the mean energy is

e = −∂ lnZ1

∂β

∣

∣

∣

V,N
=

3

2β
=

3

2
kT. (6.14)

The mean energy and pressure of an ideal gas of N particles is N times that of the corresponding
quantities for one particle. Hence, we obtain for an ideal classical gas the equations of state

P =
NkT

V
, (6.15)

and

E =
3

2
NkT. (6.16)

In the following we will usually omit the bar on mean quantities. The heat capacity at constant
volume of an ideal gas of N particles is

CV =
∂E

∂T

∣

∣

∣

V
=

3

2
Nk. (6.17)

We have derived the mechanical and thermal equations of state for an ideal classical gas for
a second time! The derivation of the equations of state is much easier in the canonical ensemble
than in the microcanonical ensemble. The reason is that we were able to consider the partition
function of one particle because the only constraint is that the temperature is fixed instead of the
total energy.

Problem 6.2. Independence of the partition function on the shape of the box

The volume dependence of Z1 should be independent of the shape of the box. Show that the same
result for Z1 is obtained if the box has linear dimensions Lx, Ly, and Lz with V = LxLyLz.

Problem 6.3. Semiclassical limit of the single particle partition function

We obtained the semiclassical limit of the partition function Z1 for one particle in a box by writing
it as a sum over single particle states and then converting the sum to an integral. Show that the
semiclassical partition function Z1 for a particle in a one-dimensional box can be expressed as

Z1 =

∫∫

dp dx

h
e−βp2/2m. (6.18)

The integral over p in (6.18) extends from −∞ to +∞.

The entropy of an ideal classical gas of N particles. Although it is straightforward to
calculate the mean energy and pressure of an ideal classical gas by considering the partition function
for one particle, the calculation of the entropy is more subtle. To understand the difficulty, consider
the calculation of the partition function of an ideal gas of two particles. Because there are no
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microstate s red blue Es

1 ǫa ǫa 2ǫa
2 ǫb ǫb 2ǫb
3 ǫc ǫc 2ǫc
4 ǫa ǫb ǫa + ǫb
5 ǫb ǫa ǫa + ǫb
6 ǫa ǫc ǫa + ǫc
7 ǫc ǫa ǫa + ǫc
8 ǫb ǫc ǫb + ǫc
9 ǫc ǫb ǫb + ǫc

Table 6.1: The nine microstates of a system of two noninteracting distinguishable particles (red
and blue). Each particle can be in one of three microstates with energy ǫa, ǫb, or ǫc.

interactions between the particles, we can write the total energy as a sum of the single particle
energies ǫ1 + ǫ2, where ǫi is the energy of the ith particle. The partition function Z2 is

Z2 =
∑

all states

e−β(ǫ1+ǫ2). (6.19)

The sum over all microstates in (6.19) is over the microstates of the two particle system. If the
two particles were distinguishable, there would be no restriction on the number of particles that
could be in any single particle microstate, and we could sum over the possible microstates of each
particle separately. Hence, the partition function for a system of two distinguishable particles has
the form

Z2, distinguishable = Z2
1 . (6.20)

It is instructive to show the origin of the relation (6.20) for a specific example. Suppose the
two particles are red and blue and are in equilibrium with a heat bath at temperature T . For
simplicity, we assume that each particle can be in one of three microstates with energies ǫa, ǫb,
and ǫc. The partition function for one particle is given by

Z1 = e−βǫa + e−βǫb + e−βǫc . (6.21)

In Table 6.1 we list the 32 = 9 possible microstates of this system of two distinguishable particles.
The corresponding partition function is given by

Z2, distinguishable = e−2βǫa + e−2βǫb + e−2βǫc

+ 2
[

e−β(ǫa+ǫb) + e−β(ǫa+ǫc) + e−β(ǫb+ǫc)
]

. (6.22)

It is easy to see that Z2 in (6.22) can be factored and expressed as in (6.20).

In contrast, if the two particles are indistinguishable, many of the microstates shown in Ta-
ble 6.1 cannot be counted as separate microstates. In this case we cannot assign the microstates
of the particles independently, and the sum over all microstates in (6.19) cannot be factored as in
(6.20). For example, the microstate a, b cannot be distinguished from the microstate b, a.

As discussed in Section 4.3.6, the semiclassical limit assumes that microstates with multiple
occupancy such as a, a and b, b can be ignored because there are many more single particle states
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than there are particles (see Problem 4.14, page 191). (In our simple example, each particle can
be in one of only three microstates, and the number of microstates is comparable to the number of
particles.) If we assume that the particles are indistinguishable and that microstates with multiple
occupancy can be ignored, then Z2 is given by

Z2 = e−β(ǫa+ǫb) + e−β(ǫa+ǫc) + e−β(ǫb+ǫc). (indistinguishable, no multiple occupancy) (6.23)

We see that if we ignore multiple occupancy there are three microstates for indistinguishable
particles and six microstates for distinguishable particles. Hence, in the semiclassical limit we can
write Z2 = Z2

1/2! where the factor of 2! corrects for overcounting. For three particles (each of
which can be in one of three possible microstates) and no multiple occupancy, there would be
one microstate of the system for indistinguishable particles and no multiple occupancy, namely
the microstate a, b, c. However, there would be six such microstates for distinguishable particles.
Thus if we count microstates assuming that the particles are distinguishable, we would overcount
the number of microstates by N !, the number of permutations of N particles.

We conclude that if we begin with the fundamental quantum mechanical description of matter,
then identical particles are indistinguishable at all temperatures. If we make the assumption that
single particle microstates with multiple occupancy can be ignored, we can express the partition
function of N noninteracting identical particles as

ZN =
Z1

N

N !
. (ideal gas, semiclassical limit) (6.24)

We substitute for Z1 from (6.10) and obtain the partition function of an ideal gas of N particles
in the semiclassical limit:

ZN =
V N

N !

(2πmkT

h2

)3N/2

. (6.25)

If we take the logarithm of both sides of (6.25) and use Stirling’s approximation (3.102), we can
write the free energy of a noninteracting classical gas as

F = −kT lnZN = −kTN
[

ln
V

N
+

3

2
ln

(2πmkT

h2

)

+ 1
]

. (6.26)

In Section 6.6 we will use the grand canonical ensemble to obtain the entropy of an ideal
classical gas without any ad hoc assumptions such as assuming that the particles are distinguishable
and then correcting for overcounting by including the factor of N !. That is, in the grand canonical
ensemble we will be able to automatically satisfy the condition that the particles are indistguishable.

Problem 6.4. Equations of state of an ideal classical gas

Use the result (6.26) to find the pressure equation of state and the mean energy of an ideal gas. Do
the equations of state depend on whether the particles are indistinguishable or distinguishable?

Problem 6.5. Entropy of an ideal classical gas

(a) The entropy can be found from the relations F = E − TS or S = −∂F/∂T . Show that

S(T, V,N) = Nk
[

ln
V

N
+

3

2
ln

(2πmkT

h2

)

+
5

2

]

. (6.27)
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The form of S in (6.27) is known as the Sackur-Tetrode equation (see Problem 4.20, page 198).
Is this form of S applicable for low temperatures?

(b) Express kT in terms of E and show that S(E, V,N) can be expressed as

S(E, V,N) = Nk
[

ln
V

N
+

3

2
ln

(4πmE

3Nh2

)

+
5

2

]

, (6.28)

in agreement with the result (4.63) found using the microcanonical ensemble.

Problem 6.6. The chemical potential of an ideal classical gas

(a) Use the relation µ = ∂F/∂N and the result (6.26) to show that the chemical potential of an
ideal classical gas is given by

µ = −kT ln
[ V

N

(2πmkT

h2

)3/2]

. (6.29)

(b) We will see in Chapter 7 that if two systems are placed into contact with different initial
chemical potentials, particles will go from the system with high chemical potential to the
system with low chemical potential. (This behavior is analogous to energy going from high to
low temperatures.) Does “high” chemical potential for an ideal classical gas imply “high” or
“low” density?

(c) Calculate the entropy and chemical potential of one mole of helium gas at standard temperature
and pressure. Take V = 2.24×10−2 m3, N = 6.02×1023, m = 6.65×10−27 kg, and T = 273K.

(d) Consider one mole of an ideal classical gas at standard temperature and pressure. Assume
that only single particle microstates with p2/2m < 3kT/2 are occupied. What fraction of
these microstates are actually occupied by the gas?

Problem 6.7. Entropy as an extensive quantity

(a) Because the entropy is an extensive quantity, we know that if we double the volume and double
the number of particles (thus keeping the density constant), the entropy must double. This
condition can be written formally as

S(T, λV, λN) = λS(T, V,N). (6.30)

Although this behavior of the entropy is completely general, there is no guarantee that an
approximate calculation of S will satisfy this condition. Show that the Sackur-Tetrode form
of the entropy of an ideal gas of identical particles, (6.27), satisfies this general condition.

(b) Show that if the N ! term were absent from (6.25) for ZN , S would be given by

S = Nk
[

lnV +
3

2
ln

(2πmkT

h2

)

+
3

2

]

. (6.31)

Is this form of S extensive?
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(a)

(b)

Figure 6.1: (a) A composite system is prepared such that there are N argon atoms in container A
and N argon atoms in container B. The two containers are at the same temperature T and have
the same volume V . What is the change of the entropy of the composite system if the partition
separating the two containers is removed and the two gases are allowed to mix? (b) A composite
system is prepared such that there are N argon atoms in container A and N helium atoms in
container B. The other conditions are the same as before. The change in the entropy when the
partition is removed is equal to 2Nk ln 2.

(c) The fact that (6.31) yields an entropy that is not extensive does not indicate that identical
particles must be indistinguishable. Instead the problem arises from our identification of S
with lnZ as mentioned in Section 4.6, page 200. Recall that we considered a system with fixed
N and made the identification that (see (4.106))

dS/k = d(lnZ + βE). (6.32)

It is straightforward to integrate (6.32) and obtain

S = k(lnZ + βE) + g(N), (6.33)

where g(N) is an arbitrary function only of N . Although we usually set g(N) = 0, it is
important to remember that g(N) is arbitrary. What must be the form of g(N) in order that
the entropy of an ideal classical gas be extensive?

Entropy of mixing. Consider two containers A and B each of volume V with two identical gases
of N argon atoms each at the same temperature T . What is the change of the entropy of the
combined system if we remove the partition separating the two containers and allow the two gases
to mix (see Figure 6.1)(a)? Because the argon atoms are identical, nothing has really changed and
no information has been lost, we know that ∆S = 0.

In contrast, suppose that one container is composed of N argon atoms and the other is
composed of N helium atoms (see Figure 6.1)(b)). What is the change of the entropy of the
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combined system if we remove the partition separating them and allow the two gases to mix?
Because argon atoms are distinguishable from helium atoms, we lose information about the system,
and therefore we know that the entropy must increase. Alternatively, we know that the entropy
must increase because removing the partition between the two containers is an irreversible process.
(Reinserting the partition would not separate the two gases.) We conclude that the entropy of
mixing is nonzero:

∆S > 0 (entropy of mixing) (6.34)

In the following, we will derive these results for the special case of an ideal classical gas.

Consider two ideal gases at the same temperature T with NA and NB particles in containers
of volume VA and VB , respectively. The gases are initially separated by a partition. We use (6.27)
for the entropy and find

SA = NAk
[

ln
VA

NA
+ f(T,mA)

]

, (6.35a)

SB = NBk
[

ln
VB

NB
+ f(T,mB)

]

, (6.35b)

where the function f(T,m) = 3/2 ln(2πmkT/h2) + 5/2, and mA and mB are the particle masses
in system A and system B, respectively. We then allow the particles to mix so that they fill the
entire volume V = VA +VB . If the particles are identical and have mass m, the total entropy after
the removal of the partition is given by

S = k(NA +NB)
[

ln
VA + VB

NA +NB
+ f(T,m)

]

, (6.36)

and the change in the value of S, the entropy of mixing, is given by

∆S = k
[

(NA +NB) ln
VA + VB

NA +NB
−NA ln

VA

NA
−NB ln

VB

NB

]

. (identical gases) (6.37)

Problem 6.8. Entropy of mixing of identical particles

(a) Use (6.37) to show that ∆S = 0 if the two gases have equal densities before separation. Write
NA = ρVA and NB = ρVB .

(b) Why is the entropy of mixing nonzero if the two gases initially have different densities even
though the particles are identical?

If the two gases are not identical, the total entropy after mixing is

S = k
[

NA ln
VA + VB

NA
+NB ln

VA + VB

NB
+NAf(T,mA) +NBf(T,mB)

]

. (6.38)

Then the entropy of mixing becomes

∆S = k
[

NA ln
VA + VB

NA
+NB ln

VA + VB

NB
−NA ln

VA

NA
−NB ln

VB

NB

]

. (6.39)

For the special case of NA = NB = N and VA = VB = V , we find

∆S = 2Nk ln 2. (6.40)
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Problem 6.9. More on the entropy of mixing

(a) Explain the result (6.40) for nonidentical particles in simple terms.

(b) Consider the special case NA = NB = N and VA = VB = V and show that if we use the result
(6.31) instead of (6.27), the entropy of mixing for identical particles is nonzero. This incorrect
result is known as Gibbs’ paradox. Does it imply that classical physics, which assumes that
particles of the same type are distinguishable, is incorrect?

6.2 Classical Statistical Mechanics

From our discussions of the ideal gas in the semiclassical limit we found that approaching the
classical limit must be done with care. Planck’s constant appears in the expression for the entropy
even for the simple case of an ideal gas, and the indistinquishability of the particles is not a classical
concept.

If we started entirely within the framework of classical mechanics, we would replace the sum
over microstates in the partition function by an integral over phase space, that is,

ZN, classical = CN

∫

e−βE(r1,...,rN ,p1,...,pN ) dr1 . . . drN dp1 . . . dpN . (6.41)

The constant CN cannot be determined from classical mechanics. From our counting of microstates
for a single particle and the harmonic oscillator in Section 4.3 and the arguments for including
the factor of 1/N ! on page 297 we see that we can obtain results consistent with starting from
quantum mechanics if we choose the constant CN to be

CN =
1

N !h3N
. (6.42)

Thus the partition function of a system of N particles in the semiclassical limit can be written as

ZN, classical =
1

N !

∫

e−βE(r1,...,rN ,p1,...,pN ) dr1 . . . drN dp1 . . . dpN

h3N
. (6.43)

We obtained a special case of the form (6.43) in Problem 6.3. In the following three subsections
we integrate over phase space as in (6.43) to find some general properties of classical systems of
many particles.

6.2.1 The equipartition theorem

We have used the microcanonical and canonical ensembles to show that the energy of an ideal
classical gas in three dimensions is given by E = 3kT/2. Similarly, we have found that the energy
of a one-dimensional harmonic oscillator is given by E = kT in the high temperature limit. These
results are special cases of the equipartition theorem which can be stated as follows:
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For a classical system in equilibrium with a heat bath at temperature T , the mean
value of each contribution to the total energy that is quadratic in a coordinate equals
1
2kT .

Note that the equipartition theorem holds regardless of the coefficients of the quadratic terms and
is valid only for a classical system. If all the contributions to the energy are quadratic, the mean
energy is distributed equally to each term (hence the name “equipartition”).

To see how to calculate averages according to classical statistical mechanics, we first consider a
single particle subject to a potential energy U(r) in equilibrium with a heat bath at temperature T .
Classically, the probability of finding the particle in a small volume dr about r with a momentum
in a small volume dp about p is proportional to the Boltzmann factor and the volume dr dp in
phase space:

p(r,p)dr dp = Ae−β(p2/2m+U(r))dr dp. (6.44)

To normalize the probability and determine the constantA we have to integrate over all the possible
values of r and p.

We next consider a classical system of N particles in the canonical ensemble. The probability
density of a particular microstate is proportional to the Boltzmann probability e−βE , where E
is the energy of the microstate. Because a microstate is defined classically by the positions and
momenta of every particle, we can express the average of any physical quantity f(r,p) in a classical
system as

f =

∫

f(r1, . . . , rN ,p1, . . . ,pN) e−βE(r1,...,rN ,p1,...,pN ) dr1 . . . drN dp1 . . . dpN
∫

e−βE(r1,...,rN ,p1,...,pN ) dr1 . . . drN dp1 . . . dpN
. (6.45)

Note that the sum over quantum states has been replaced by an integration over phase space. We
could divide the numerator and denominator by h3N so that we would obtain the correct number of
microstates in the semiclassical limit, but this factor cancels in calculations of average quantities.
We have already seen that the mean energy and mean pressure do not depend on whether the
factors of h3N and 1/N ! are included in the partition function.

Suppose that the total energy can be written as a sum of quadratic terms. For example, the
kinetic energy of one particle in three dimensions in the nonrelativistic limit can be expressed as
(p2

x +p2
y +p2

z)/2m. Another example is the one-dimensional harmonic oscillator for which the total
energy is p2

x/2m+ kx2/2. For simplicity let’s consider a one-dimensional system of two particles,
and suppose that the energy of the system can be written as

E = ǫ1(p1) + Ẽ(x1, x2, p2), (6.46)
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where ǫ1 = bp2
1 with b equal to a constant. We have separated out the quadratic dependence of

the energy of particle one on its momentum. We use (6.45) and express the mean value of ǫ1 as

ǫ1 =

∫ ∞

−∞ ǫ1 e
−βE(x1,x2,p1,p2) dx1dx2 dp1dp2

∫ ∞

−∞ e−βE(x1,x2,p1,p2) dx1dx2 dp1dp2

(6.47a)

=

∫ ∞

−∞
ǫ1 e

−β[ǫ1+Ẽ(x1,x2,p2)] dx1dx2 dp1dp2
∫ ∞

−∞ e−β[ǫ1+Ẽ(x1,x2,p2,p2)] dx1dx2dp1dp2

(6.47b)

=

∫ ∞

−∞
ǫ1 e

−βǫ1dp1

∫

e−βẼ dx1dx2 dp2
∫ ∞

−∞ e−βǫ1dp1

∫

e−βẼ dx1dx2 dp2

. (6.47c)

The integrals over all the coordinates except p1 cancel, and we have

ǫ1 =

∫ ∞

−∞ ǫ1 e
−βǫ1 dp1

∫ ∞

−∞e
−βǫ1 dp1

. (6.48)

As we have done in other contexts (see (4.84), page 203) we can write ǫ1 as

ǫ1 = − ∂

∂β
ln

(

∫ ∞

−∞

e−βǫ1 dp1

)

. (6.49)

If we substitute ǫ1 = ap2
1, the integral in (6.49) becomes

I(β) =

∫ ∞

−∞

e−βǫ1dp1 =

∫ ∞

−∞

e−βap2
1 dp1 (6.50a)

= (βa)−1/2

∫ ∞

−∞

e−u2

du, (6.50b)

where we have let u2 = βap2. Note that the integral in (6.50b) is independent of β, and its
numerical value is irrelevant. Hence

ǫ1 = − ∂

∂β
ln I(β) =

1

2
kT. (6.51)

Equation (6.51) is an example of the equipartition theorem of classical statistical mechanics.

The equipartition theorem is not really a new result, is applicable only when the system can
be described classically, and is applicable only to each term in the energy that is proportional to
a coordinate squared. This coordinate must take on a continuum of values from −∞ to +∞.

Applications of the equipartition theorem. A system of particles in three dimensions has
3N quadratic contributions to the kinetic energy, three for each particle. From the equipartition
theorem, we know that the mean kinetic energy is 3NkT/2, independent of the nature of the
interactions, if any, between the particles. Hence, the heat capacity at constant volume of an ideal
classical monatomic gas is given by CV = 3Nk/2 as we have found previously.

Another application of the equipartition function is to the one-dimensional harmonic oscillator
in the classical limit. In this case there are two quadratic contributions to the total energy and
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hence the mean energy of a one-dimensional classical harmonic oscillator in equilibrium with a
heat bath at temperature T is kT . In the harmonic model of a crystal each atom feels a harmonic
or spring-like force due to its neighboring atoms (see Section 6.9.1). The N atoms independently
perform simple harmonic oscillations about their equilibrium positions. Each atom contributes
three quadratic terms to the kinetic energy and three quadratic terms to the potential energy.
Hence, in the high temperature limit the energy of a crystal of N atoms is E = 6NkT/2 and the
heat capacity at constant volume is

CV = 3Nk. (law of Dulong and Petit) (6.52)

The result (6.52) is known as the law of Dulong and Petit. This result was first discovered empiri-
cally and is valid only at sufficiently high temperatures. At low temperatures a quantum treatment
is necessary and the independence of CV on T breaks down. The heat capacity of an insulating
solid at low temperatures is discussed in Section 6.9.2.

We next consider an ideal gas consisting of diatomic molecules (see Figure 6.5 on page 347).
Its pressure equation of state is still given by PV = NkT , because the pressure depends only on the
translational motion of the center of mass of each molecule. However, its heat capacity differs from
that of a ideal monatomic gas because a diatomic molecule has additional energy associated with
its vibrational and rotational motion. Hence, we would expect that CV for an ideal diatomic gas
is greater than CV for an ideal monatomic gas. The temperature-dependence of the heat capacity
of an ideal diatomic gas is explored in Problem 6.47.

6.2.2 The Maxwell velocity distribution

So far we have used the tools of statistical mechanics to calculate macroscopic quantities of in-
terest in thermodynamics such as the pressure, the temperature, and the heat capacity. We now
apply statistical mechanics arguments to gain more detailed information about classical systems
of particles by calculating the velocity distribution of the particles.

Consider a classical system of particles in equilibrium with a heat bath at temperature T . We
know that the total energy can be written as the sum of two parts: the kinetic energyK(p1, . . . ,pN )
and the potential energy U(r1, . . . , rN ). The kinetic energy is a quadratic function of the momenta
p1, . . . ,pN (or velocities), and the potential energy is a function of the positions r1, . . . , rN of the
particles. The total energy is E = K + U . The probability density of a microstate of N particles
defined by r1, . . . , rN ,p1, . . . ,pN is given in the canonical ensemble by

p(r1, . . . , rN ;p1, . . . ,pN) = Ae−[K(p1,p2,...,pN)+U(r1,r2,...,rN )]/kT (6.53a)

= Ae−K(p1,p2,...,pN )/kT e−U(r1,r2,...,rN )/kT , (6.53b)

where A is a normalization constant. The probability density p is a product of two factors, one that
depends only on the particle positions and the other that depends only on the particle momenta.
This factorization implies that the probabilities of the momenta and positions are independent.
The momentum of a particle is not influenced by its position and vice versa. The probability of
the positions of the particles can be written as

f(r1, . . . , rN ) dr1 . . . drN = B e−U(r1,...,rN )/kT dr1 . . . drN , (6.54)
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and the probability of the momenta is given by

f(p1, . . . ,pN ) dp1 . . . dpN = C e−K(p1,...,pN )/kT dp1 . . . dpN . (6.55)

For notational simplicity, we have denoted the two probability densities by f , even though their
meaning is different in (6.54) and (6.55). The constants B and C in (6.54) and (6.55) can be found
by requiring that each probability be normalized.

We stress that the probability distribution for the momenta does not depend on the nature of
the interaction between the particles and is the same for all classical systems at the same temper-
ature. This statement might seem surprising because it might seem that the velocity distribution
should depend on the density of the system. An external potential also does not affect the velocity
distribution. These statements do not hold for quantum systems, because in this case the position

and momentum operators do not commute. That is, e−β(K̂+Û) 6= e−βK̂e−βÛ for quantum systems,
where we have used the symbol ˆ to denote operators in quantum mechanics.

Because the total kinetic energy is a sum of the kinetic energy of each of the particles, the
probability density f(p1, . . . ,pN ) is a product of terms that each depend on the momenta of only
one particle. This factorization implies that the momentum probabilities of the various particles
are independent, that is, the momentum of one particle does not affect the momentum of any
other particle. These considerations imply that we can write the probability that a particle has
momentum p in the range dp as

f(px, py, pz) dpxdpydpz = c e−(p2
x+p2

y+p2
z)/2mkT dpxdpydpz . (6.56)

The constant c is given by the normalization condition

c

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−(p2
x+p2

y+p2
z)/2mkT dpxdpydpz = c

[

∫ ∞

−∞

e−p2/2mkT dp
]3

= 1. (6.57)

If we use the fact that
∫ ∞

−∞ e−αx2

dx = (π/α)1/2 (see Appendix A), we find that c = (2πmkT )−3/2.
Hence the momentum probability distribution can be expressed as

f(px, py, pz) dpxdpydpz =
1

(2πmkT )3/2
e−(p2

x+p2
y+p2

z)/2mkT dpxdpydpz. (6.58)

The corresponding velocity probability distribution is given by

f(vx, vy, vz) dvxdvydvz =
( m

2πkT

)3/2

e−m(v2
x+v2

y+v2
z)/2kT dvxdvydvz . (6.59)

Equation (6.59) is known as the Maxwell velocity distribution. Note that its form is a Gaussian.
The probability distribution for the speed is discussed in Section 6.2.3.

Because f(vx, vy, vz) is a product of three independent factors, the probability of the velocity
of a particle in a particular direction is independent of the velocity in any other direction. For
example, the probability that a particle has a velocity in the x-direction in the range vx to vx +dvx

is

f(vx) dvx =
( m

2πkT

)1/2

e−mv2
x/2kT dvx. (6.60)
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Many textbooks derive the Maxwell velocity distribution for an ideal classical gas and give
the misleading impression that the distribution applies only if the particles are noninteracting.
We stress that the Maxwell velocity (and momentum) distribution applies to any classical system
regardless of the interactions, if any, between the particles.

Problem 6.10. Is there an upper limit to the velocity?

The upper limit to the velocity of a particle is the velocity of light. Yet the Maxwell velocity
distribution imposes no upper limit to the velocity. Does this contradiction lead to difficulties?

Problem 6.11. Simulations of the Maxwell velocity distribution

(a) Program LJ2DFluidMD simulates a system of particles interacting via the Lennard-Jones poten-
tial (1.1) in two dimensions by solving Newton’s equations of motion numerically. The program
computes the distribution of velocities in the x-direction among other quantities. Compare
the form of the velocity distribution to the form of the Maxwell velocity distribution in (6.60).
How does its width depend on the temperature?

(b) Program TemperatureMeasurementIdealGas implements the demon algorithm for an ideal
classical gas in one dimension (see Section 4.9). All the particles have the same initial velocity.
The program computes the distribution of velocities among other quantities. What is the
form of the velocity distribution? Give an argument based on the central limit theorem (see
Section 3.7) why the distribution has the observed form. Is this form consistent with (6.60)?

6.2.3 The Maxwell speed distribution

We have found that the distribution of velocities in a classical system of particles is a Gaussian
and is given by (6.59). To determine the distribution of speeds for a three-dimensional system we
need to know the number of microstates between v and v + ∆v. This number is proportional to
the volume of a spherical shell of width ∆v or 4π(v + ∆v)3/3 − 4πv3/3 → 4πv2∆v in the limit
∆v → 0. Hence, the probability that a particle has a speed between v and v + dv is given by

f(v)dv = 4πAv2e−mv2/2kT dv, (6.61)

where A is a normalization constant which we calculate in Problem 6.12.

Problem 6.12. Maxwell speed distribution

(a) Compare the form of the Maxwell speed distribution (6.61) with the form of the Maxwell
velocity distribution (6.59).

(b) Use the normalization condition
∫ ∞

0 f(v)dv = 1 to calculate A and show that

f(v)dv = 4πv2
( m

2πkT

)3/2

e−mv2/2kT dv. (Maxwell speed distribution) (6.62)

(c) Calculate the mean speed v, the most probable speed ṽ, and the root-mean square speed vrms

and discuss their relative magnitudes.
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Figure 6.2: The probability density f(u) = 4/
√
πu2e−u2

that a particle has a dimensionless speed
u. Note the difference between the most probable speed ũ = 1, the mean speed u ≈ 1.13, and the
root-mean-square speed urms ≈ 1.22. The dimensionless speed u is defined by u ≡ v/(2kT/m)1/2.

(d) Make the change of variables u = v/
√

(2kT/m) and show that

f(v)dv = f(u)du = (4/
√
π)u2e−u2

du, (6.63)

where we have again used same the same notation for two different, but physically related
probability densities. The (dimensionless) speed probability density f(u) is shown in Figure 6.2.

Problem 6.13. Maxwell speed distribution in one or two dimensions

Find the Maxwell speed distribution for particles restricted to one and two dimensions.

6.3 Occupation Numbers and Bose and Fermi Statistics

We now develop the formalism for calculating the thermodynamic properties of ideal gases for
which quantum effects are important. We have already noted that the absence of interactions
between the particles of an ideal gas enables us to reduce the problem of determining the energy
levels of the gas as a whole to determining ǫk, the energy levels of a single particle. Because
the particles are indistinguishable, we cannot specify the microstate of each particle. Instead a
microstate of an ideal gas is specified by the occupation numbers nk, the number of particles in the
single particle state k with energy ǫk.2 If we know the value of the occupation number for each

2The relation of k to the quantum numbers labeling the single particle microstates is given in (4.35) and in
(6.93). In the following we will use k to label single particle microstates.
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single particle microstate, we can write the total energy of the system in microstate s as

Es =
∑

k

nk ǫk. (6.64)

The set of nk completely specifies a microstate of the system.

The partition function for an ideal gas can be expressed in terms of the occupation numbers
as

Z(V, T,N) =
∑

{nk}

e−β
P

k
nkǫk , (6.65)

where the occupation numbers nk satisfy the condition

N =
∑

k

nk. (6.66)

The condition (6.66) is difficult to satisfy in practice, and we will later use the grand canonical
ensemble for which the condition of a fixed number of particles is relaxed.

As discussed in Section 4.3.6 one of the fundamental results of relativistic quantum mechanics
is that all particles can be classified into two groups. Particles with zero or integral spin such as 4He
are bosons and have wave functions that are symmetric under the exchange of any pair of particles.
Particles with half-integral spin such as electrons, protons, and neutrons are fermions and have
wave functions that are antisymmetric under particle exchange. The Bose or Fermi character of
composite objects can be found by noting that composite objects that have an even number of
fermions are bosons and those containing an odd number of fermions are themselves fermions. For
example, an atom of 3He is composed of an odd number of particles: two electrons, two protons,
and one neutron each of spin 1

2 . Hence, 3He has half-integral spin making it a fermion. An atom
of 4He has one more neutron so there are an even number of fermions and 4He is a boson.

It is remarkable that all particles fall into one of two mutually exclusive classes with different
spin. It is even more remarkable that there is a connection between the spin of a particle and
its statistics. Why are particles with half-integral spin fermions and particles with integral spin
bosons? The answer lies in the requirements imposed by Lorentz invariance on quantum field
theory. This requirement implies that the form of quantum field theory must be the same in all
inertial reference frames. Although many physicists believe that the relation between spin and
statistics must have a simpler explanation, no such explanation yet exists.3

The difference between fermions and bosons is specified by the possible values of nk. For
fermions we have

nk = 0 or 1. (fermions) (6.67)

The restriction (6.67) is a statement of the Pauli exclusion principle for noninteracting particles –
two identical fermions cannot be in the same single particle microstate. In contrast, the occupation
numbers nk for identical bosons can take any positive integer value:

nk = 0, 1, 2, · · · (bosons) (6.68)

We will see in the following sections that the nature of the statistics of a many particle system can
have a profound effect on its properties.

3In spite of its fundamental importance, it is only a slight exaggeration to say that “everyone knows the spin-
statistics theorem, but no one understands it.” See the text by Ian Duck and E. C. G. Sudarshan.
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n1 n2 n3 n4

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 6.2: The possible states of a three particle fermion system with four single particle energy
microstates. The quantity n1 represents the number of particles in the single particle microstate
labeled 1, etc. Note that we have not specified which particle is in a particular microstate.

Example 6.1. Calculate the partition function of an ideal gas of N = 3 identical fermions in
equilibrium with a heat bath at temperature T . Assume that each particle can be in one of four
possible microstates with energies, ǫ1, ǫ2, ǫ3, and ǫ4.

Solution. The possible microstates of the system are summarized in Table 6.2. The spin of the
fermions is neglected. Is it possible to reduce this problem to a one body problem as we did for a
noninteracting classical system?

From Table 6.2 we see that the partition function is given by

Z3 = e−β(ǫ2+ǫ3+ǫ4) + e−β(ǫ1+ǫ3+ǫ4) + e−β(ǫ1+ǫ2+ǫ4) + e−β(ǫ1+ǫ2+ǫ3). (6.69)

♦

Problem 6.14. Calculate n1, the mean number of fermions in the single particle microstate 1
with energy ǫ1, for the system in Example 6.1.

Problem 6.15. Mean energy of a toy model of an ideal Bose gas

(a) Calculate the mean energy of an ideal gas of N = 2 identical bosons in equilibrium with a heat
bath at temperature T , assuming that each particle can be in one of three microstates with
energies, 0, ∆, and 2∆.

(b) Calculate the mean energy for N = 2 distinguishable particles assuming that that each particle
can be in one of three possible microstates.

(c) If Ē1 is the mean energy for one particle and Ē2 is the mean energy for the two particle system,
is Ē2 = 2Ē1 for either bosons or distinguishable particles?

6.4 Distribution Functions of Ideal Bose and Fermi Gases

The calculation of the partition function for an ideal gas in the semiclassical limit was done by
choosing a single particle as the system. This choice is not possible for an ideal gas at low tem-
peratures where the quantum nature of the particles cannot be ignored. So we need a different
strategy. The key idea is that it is possible to distinguish the subset of all particles in a given

single particle microstate from the particles in all other single particle states. For this reason we
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divide the system of interest into subsystems each of which is the set of all particles that are in a

given single particle microstate. Because the number of particles in a given microstate varies, we
need to use the grand canonical ensemble and assume that each subsystem is coupled to a heat
bath and a particle reservoir independently of the other single particle microstates.

Because we have not yet applied the grand canonical ensemble, we review it here. The thermo-
dynamic potential in the grand canonical ensemble is denoted by Ω(T, V, µ) and is equal to −PV
(see (2.168)). The relation of thermodynamics to statistical mechanics is given by Ω = −kT lnZG,
where the grand partition function ZG is given by

ZG =
∑

s

e−β(Es−µNs), (6.70)

where Es is the energy of microstate s and Ns is the number of particles in microstate s. The goal
is to calculate ZG, then Ω and the pressure equation of state −PV (in terms of T , V , and µ), and
then determine S from the relation

S = −
(∂Ω

∂T

)

V,µ
, (6.71)

and the mean number of particles from the relation

N = −
(∂Ω

∂µ

)

T,V
(6.72)

The probability of a particular microstate is given by

Ps =
1

ZG
e−β(Es−µNs). (Gibbs distribution) (6.73)

Because we can treat an ideal gas as a collection of independent subsystems where each
subsystem is a single particle microstate, ZG reduces to the product of ZG, k for each subsystem.
Thus, the first step is to calculate the grand partition function ZG, k for each subsystem. We write
the energy of the nk particles in the single particle microstate k as nk ǫk and write ZG, k as

ZG, k =
∑

nk

e−βnk(ǫk−µ), (6.74)

where the sum is over the possible values of nk. For fermions this sum is straightforward because
nk = 0 and 1 (see (6.67)). Hence

ZG, k = 1 + e−β(ǫk−µ). (6.75)

The corresponding thermodynamic or Landau potential Ωk is given by

Ωk = −kT lnZG, k = −kT ln[1 + e−β(ǫk−µ)]. (6.76)

We use the relation nk = −∂Ωk/∂µ (see (6.72)) to find the mean number of particles in microstate
k. The result is

nk = −∂Ωk

∂µ
=

e−β(µ−ǫk)

1 + e−β(µ−ǫk)
, (6.77)

or
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nk =
1

eβ(ǫk−µ) + 1
. (Fermi-Dirac distribution) (6.78)

The result (6.78) for the mean number of particles in single particle microstate k is known as the
Fermi-Dirac distribution.

The integer values of nk are unrestricted for bosons. We write (6.74) as

ZG, k = 1 + e−β(ǫk−µ) + e−2β(ǫk−µ) + · · · =

∞
∑

nk=0

[

e−β(ǫk−µ)
]nk . (6.79)

The geometric series in (6.79) is convergent for e−β(ǫk−µ) < 1. Because this condition must be
satisfied for all values of ǫk, we require that eβµ < 1 or

µ < 0. (bosons) (6.80)

In contrast, the chemical potential may be either positive or negative for fermions. The summation
of the geometric series in (6.79) gives

ZG, k =
1

1 − e−β(ǫk−µ)
, (6.81)

and hence we obtain
Ωk = kT ln

[

1 − e−β(ǫk−µ)
]

. (6.82)

The mean number of particles in single particle microstate k is given by

nk = −∂Ωk

∂µ
=

e−β(ǫk−µ)

1 − e−β(ǫk−µ)
, (6.83)

or

nk =
1

eβ(ǫk−µ) − 1
. (Bose-Einstein distribution) (6.84)

The form (6.84) is known as the Bose-Einstein distribution.

It is frequently convenient to group the Fermi-Dirac and Bose-Einstein distributions together
and to write

nk =
1

eβ(ǫk−µ) ± 1
.

{

+ Fermi-Dirac distribution

− Bose-Einstein distribution
. (6.85)

The convention is that the upper sign corresponds to Fermi statistics and the lower sign to Bose
statistics.

Because the (grand) partition function ZG is a product, ZG =
∏

k ZG, k, the Landau potential
for the ideal gas is given by

Ω(T, V, µ) =
∑

k

Ωk = ∓kT
∑

k

ln
[

1 ± e−β(ǫk−µ)
]

. (6.86)

The classical limit. The Fermi-Dirac and Bose-Einstein distributions must reduce to the classical
limit under the appropriate conditions. In the classical limit nk ≪ 1 for all k; that is, the mean
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number of particles in any single particle microstate must be small. Hence ǫβ(ǫk−µ) ≫ 1 and in
this limit both the Fermi-Dirac and Bose-Einstein distributions reduce to

nk = e−β(ǫk−µ) (Maxwell-Boltzmann distribution) (6.87)

This result (6.87) is known as the Maxwell-Boltzmann distribution.

6.5 Single Particle Density of States

To find the various thermodynamic quantities we need to calculate various sums. For example, to
obtain the mean number of particles in the system we need to sum (6.85) over all single particle
states:

N(T, V, µ) =
∑

k

nk =
∑

k

1

eβ(ǫk−µ) ± 1
. (6.88)

For a given temperature T and volume V , (6.88) is an implicit equation for the chemical potential
µ in terms of the mean number of particles. That is, the chemical potential determines the mean
number of particles just as the temperature determines the mean energy. Similarly, we can write
the mean energy of the system as

E(T, V, µ) =
∑

k

nk ǫk. (6.89)

For a macroscopic system the number of particles and the energy are well defined, and we will
usually replace N and E by N and E respectively.

Because we have described the microscopic states at the most fundamental level, that is, by
using quantum mechanics, the macroscopic averages of interest such as (6.88), (6.89) and (6.86)
involve sums over the microscopic states. However, because the systems of interest are macroscopic,
the volume of the system is so large that the energies of the discrete microstates are very close
together and for practical purposes indistinguishable from a continuum. As usual, it is easier to
do integrals than to do sums over a very large number of microstates, and we will replace the sums
in (6.88)–(6.86) by integrals. For example, we will write for an arbitrary function f(ǫ)

∑

k

f(ǫk) →
∫ ∞

0

f(ǫ) g(ǫ)dǫ, (6.90)

where g(ǫ) dǫ is the number of single particle microstates between ǫ and ǫ+ dǫ. The quantity g(ǫ)
is known as the density of states, although a better term would be the density of single particle
microstates.

Although we have calculated the density of states g(ǫ) for a single particle in a box (see Sec-
tion 4.3), we review the calculation here to emphasize its generality and the common aspects of the
calculation for blackbody radiation, elastic waves in a solid, and electron waves. For convenience,
we choose the box to be a cube of linear dimension L and assume that there are standing waves
that vanish at the faces of the cube. The condition for a standing wave in one dimension is that
the wavelength satisfies the condition

λ =
2L

n
, (n = 1, 2, . . .) (6.91)
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where n is a nonzero positive integer. It is useful to define the wave number k as

k =
2π

λ
, (6.92)

and write the standing wave condition as k = nπ/L. Because the waves in the x, y, and z directions
satisfy similar conditions, we can treat the wave number as a vector whose components satisfy the
condition

k = (nx, ny, nz)
π

L
, (6.93)

where nx, ny, nz are positive nonzero integers.

Not all values of k are permissible and each combination of {nx, ny, nz} corresponds to a
different microstate. In the “number space” defined by the three perpendicular axes labeled by
nx, ny, and nz, the possible values of the microstates lie at the centers of cubes of unit edge
length. Because the energy of a wave depends only on the magnitude of k, we want to know the
number of microstates between k and k + dk. As we did in Section 4.3, it is easier to first find
Γ(k), the number of microstates with wave number less than or equal to k. We know that the
volume in n-space of a single particle microstate is one, and hence the number of single particle
microstates in number space that are contained in the positive octant of a sphere of radius n is
given by Γ(n) = 1

8 (4πn3/3), where n2 = n2
x + n2

y + n2
z. Because k = πn/L, the number of single

particle microstates with wave vector less than or equal to k is

Γ(k) =
1

8

4πk3/3

(π/L)3
. (6.94)

If we use the relation

g(k) dk = Γ(k + dk) − Γ(k) =
dΓ(k)

dk
dk, (6.95)

we obtain

g(k) dk = V
k2dk

2π2
, (6.96)

where the volume V = L3. Equation (6.96) gives the density of states in k-space between k and
k + dk.

Although we obtained the result (6.96) for a cube, the result is independent of the shape of
the enclosure and the nature of the boundary conditions (see Problem 6.58). That is, if the box is
sufficiently large, the surface effects introduced by the box do not affect the physical properties of
the system.

Problem 6.16. Single particle density of states in one and two dimensions

Find the form of the density of states in k-space for standing waves in a two-dimensional and in a
one-dimensional box.

6.5.1 Photons

The result (6.96) for the density of states in k-space holds for any wave in a three-dimensional
enclosure. We next determine the number of states g(ǫ) dǫ as a function of the energy ǫ. For
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simplicity, we adopt the same symbol to represent the density of states in k-space and in ǫ-space
because the meaning of g will be clear from the context.

The nature of the dependence of g(ǫ) on the energy ǫ is determined by the form of the function
ǫk. For electromagnetic waves of frequency ν we know that λν = c, ω = 2πν, and k = 2π/λ. Hence,
ω = 2πc/λ or

ω = ck. (6.97)

The energy ǫ of a photon of frequency ω is

ǫ = ~ω = ~ck. (6.98)

Because k = ǫ/~c, we find from (6.96) that

g(ǫ) dǫ = V
ǫ2

2π2~3c3
dǫ. (6.99)

The result (6.99) requires one modification. The state of an electromagnetic wave or photon
depends not only on its wave vector or momentum, but also on its polarization. There are two
mutually perpendicular directions of polarization (right circularly polarized and left circularly po-
larized) for each electromagnetic wave of wave number k.4 Thus the number of photon microstates
in which the photon has an energy in the range ǫ to ǫ+ dǫ is given by

g(ǫ) dǫ = V
ǫ2dǫ

π2~3c3
. (photons) (6.100)

We will use (6.100) frequently in the following.

6.5.2 Nonrelativistic particles

For a nonrelativistic particle of mass m we know that

ǫ =
p2

2m
. (6.101)

From the relations p = h/λ and k = 2π/λ, we find that the momentum p of a particle is related to
its wave vector k by p = ~k. Hence, the energy can be expressed as

ǫ =
~

2k2

2m
, (6.102)

and

dǫ =
~

2k

m
dk. (6.103)

If we use (6.96) and the relations (6.102) and (6.103), we find that the number of microstates in
the interval ǫ to ǫ+ dǫ is given by

g(ǫ) dǫ = ns
V

4π2~3
(2m)3/2 ǫ1/2 dǫ. (6.104)

4In the language of quantum mechanics we say that the photon has spin one and two helicity states. The fact
that the photon has spin S = 1 and two helicity states rather than (2S + 1) = 3 states is a consequence of special
relativity for massless particles.
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We have included a factor of ns, the number of spin states for a given value of k or ǫ. Because
electrons have spin 1/2, ns = 2, and we can write (6.104) as

g(ǫ) dǫ =
V

2π2~3
(2m)3/2 ǫ1/2 dǫ. (electrons) (6.105)

Because it is common to choose units such that ~ = 1, we will express most of our results in the
remainder of this chapter in terms of ~ instead of h.

Problem 6.17. Density of states in one and two dimensions

Calculate the density of states g(ǫ) for a nonrelativistic particle of mass m in in one and two
dimensions (see Problem 6.16). Sketch g(ǫ) on one graph for d = 1, 2, and 3 and comment on the
different dependence of g(ǫ) on ǫ for different spatial dimensions.

Problem 6.18. Relativistic particles

Calculate the density of states g(ǫ) in three dimensions for a relativistic particle of rest mass m
for which ǫ2 = p2c2 +m2c4. Don’t try to simplify your result.

Problem 6.19. Relation between the energy and pressure equations of state for a nonrelativistic
ideal gas

The mean energy E is given by

E =

∫ ∞

0

ǫn(ǫ) g(ǫ) dǫ (6.106a)

= ns
V

4π2~3
(2m)3/2

∫ ∞

0

ǫ3/2dǫ

eβ(ǫ−µ) ± 1
. (6.106b)

Use (6.86) for the Landau potential and (6.104) for the density of states of nonrelativistic particles
in three dimensions to show that Ω can be expressed as

Ω = ∓kT
∫ ∞

0

g(ǫ) ln[1 ± e−β(ǫ−µ)] dǫ, (6.107)

= ∓kT nsV

4π2~3
(2m)3/2

∫ ∞

0

ǫ1/2 ln[1 ± e−β(ǫ−µ)] dǫ. (6.108)

Integrate (6.108) by parts with u = ln[1 ± e−β(ǫ−µ)] and dv = ǫ1/2 dǫ and show that

Ω = −2

3
ns

V

4π2~3
(2m)3/2

∫ ∞

0

ǫ3/2 dǫ

eβ(ǫ−µ) ± 1
. (6.109)

The form (6.106b) for E is the same as the general result (6.109) for Ω except for the factor of − 2
3 .

Use the relation Ω = −PV (see (2.168)) to show that

PV =
2

3
E. (6.110)

The relation (6.110) is exact and holds for an ideal gas with any statistics at any temperature T ,
and depends only on the nonrelativistic relation, ǫ = p2/2m.
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Problem 6.20. Relation between the energy and pressure equations of state for photons

Use similar considerations as in Problem 6.19 to show that for photons:

PV =
1

3
E. (6.111)

Equation (6.111) holds at any temperature and is consistent with Maxwell’s equations. Thus, the
pressure due to electromagnetic radiation is related to the energy density by P = u(T )/3.

6.6 The Equation of State of an Ideal Classical Gas: Appli-

cation of the Grand Canonical Ensemble

We have already seen how to obtain the equations of state and other thermodynamic quantities
for the ideal classical gas in the microcanonical ensemble (fixed E, T , and N) and in the canonical
ensemble (fixed T , V , and N). We now discuss how to use the grand canonical ensemble (fixed
T , V , and µ) to find the analogous quantities under conditions for which the Maxwell-Boltzmann
distribution is applicable. The calculation in the grand canonical ensemble will automatically
satisfy the condition that the particles are indistinguishable.

As an example, we first calculate the chemical potential given that the mean number of
particles is N . We use the Maxwell distribution (6.87) and the density of states (6.104) for particles
of mass m and set ns = 1 for simplicity. The result is

N =
∑

k

nk →
∫ ∞

0

n(ǫ) g(ǫ) dǫ (6.112a)

=
V

4π2

(2m

~2

)3/2
∫ ∞

0

e−β(ǫ−µ) ǫ1/2 dǫ. (6.112b)

We make the change of variables u = βǫ and write (6.112b) as

N =
V

4π2

( 2m

~2β

)3/2

eβµ

∫ ∞

0

e−u u1/2 du. (6.113)

The integral in (6.113) can be done analytically (make the change of variables u = y2) and has the
value π1/2/2 (see Appendix A). Hence, the mean number of particles is given by

N(T, V, µ) = V
( m

2π~2β

)3/2

eβµ. (6.114)

Because we cannot easily measure µ, it is of more interest to find the value of µ that yields
the desired value of N . The solution of (6.114) for the chemical potential is

µ = kT ln
[N

V

(2π~
2β

m

)3/2]

. (6.115)

What is the difference, if any, between (6.114) and the result (6.29) for µ found in the canonical
ensemble?
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Problem 6.21. The chemical potential

(a) Estimate the chemical potential of one mole of a ideal monatomic classical gas at standard
temperature and pressure and show that µ≪ 0.

(b) Show that N can be expressed as (see (6.114))

N =
V

λ3
eβµ, (6.116)

and hence

µ(T, V ) = −kT ln
1

ρλ3
, (6.117)

where ρ = N/V .

(c) In Section 6.1 we argued that the semiclassical limit λ≪ ρ−1/3 (see (6.1)) implies that nk ≪ 1;
that is, the mean number of particles in any single particle energy state is very small. Use
the expression (6.117) for µ and (6.87) for nk to show that the condition nk ≪ 1 implies that
λ≪ ρ−1/3.

As we saw in Section 2.21, the chemical potential is the change in any of the thermodynamic
potentials when a particle is added. It might be expected that µ > 0, because it should cost energy
to add a particle. But because the particles do not interact, perhaps µ = 0? So why is µ ≪ 0 for
an ideal classical gas? The reason is that we have to include the contribution of the entropy. In
the canonical ensemble the change in the free energy due to the addition of a particle at constant
temperature is ∆F = ∆E−T∆S ≈ kT−T∆S. The number of places where the additional particle
can be located is approximately V/λ3, and hence ∆S ∼ k lnV/λ3. Because V/λ3 ≫ 1, ∆S ≫ ∆E,
and thus ∆F ≪ 0, which implies that µ = ∆F/∆N ≪ 0.

The example calculation of N(T, V, µ) leading to (6.114) was not necessary because we can
calculate all thermodynamic quantities directly from the Landau potential Ω. We calculate Ω from
(6.86) by noting that eβµ ≪ 1 and approximating the logarithm as ln (1 ± x) ≈ ±x. We find that

Ω = ∓kT
∑

k

ln
[

1 ± e−β(ǫk−µ)
]

(6.118a)

→ −kT
∑

k

e−β(ǫk−µ). (semiclassical limit) (6.118b)

As expected, the form of Ω in (6.118b) is independent of whether we started with Bose or Fermi
statistics.

As usual, we replace the sum over the single particle states by an integral over the density of
states and find

Ω = −kT eβµ

∫ ∞

0

g(ǫ) e−βǫ dǫ (6.119a)

= −kT V

4π2~3

(2m

β

)3/2

eβµ

∫ ∞

0

x1/2e−u du (6.119b)

= − V

β5/2

( m

2π~2

)3/2

eβµ. (6.119c)
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If we substitute λ = (2πβ~
2/m)1/2, we find

Ω = −kT V
λ3

eβµ. (6.120)

From the relation Ω = −PV (see (2.168)), we obtain

P =
kT

λ3
eβµ. (6.121)

If we use the thermodynamic relation (6.72), we obtain

N = −∂Ω

∂µ

∣

∣

∣

V,T
=
V

λ3
eβµ. (6.122)

The classical equation of state, PV = NkT , is obtained by using (6.122) to eliminate µ. The
simplest way of finding the energy is to use the relation (6.110).

We can find the entropy S(T, V, µ) using (6.120) and (6.71):

S(T, V, µ) = −∂Ω

∂T

∣

∣

∣

V,µ
= kβ2 ∂Ω

∂β
(6.123a)

= V kβ2
[ 5

2β7/2
− µ

β5/2

]( m

2π~2

)3/2

eβµ. (6.123b)

We eliminate µ from (6.123b) using (6.115) and obtain the Sackur-Tetrode expression for the
entropy of an ideal gas:

S(T, V,N) = Nk
[5

2
− ln

N

V
− ln

(2π~
2

mkT

)3/2]

. (6.124)

We have written N rather than N in (6.124). Note that we did not have to introduce any ex-
tra factors of N ! as we did in Section 6.1, because we already correctly counted the number of
microstates.

Problem 6.22. Ideal gas equations of state

Show that E = (3/2)NkT and PV = NkT from the results of this section.

6.7 Blackbody Radiation

We can regard electromagnetic radiation as equivalent to a system of noninteracting bosons (pho-
tons), each of which has an energy hν, where ν is the frequency of the radiation. If the radiation is
in an enclosure, equilibrium will be established and maintained by the interactions of the photons
with the atoms of the wall in the enclosure. Because the atoms emit and absorb photons, the total
number of photons is not conserved.

If a body in thermal equilibrium emits electromagnetic radiation, this radiation is described as
blackbody radiation and the object is said to be a blackbody. This statement does not mean that
the body is actually black. The word “black” indicates that the radiation is perfectly absorbed and
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re-radiated by the object. The frequency spectrum of light radiated by such an idealized body is
described by a universal spectrum called the Planck spectrum, which we will derive in the following
(see (6.133)). The nature of the spectrum depends only on the temperature T of the radiation.

We can derive the Planck radiation law using either the canonical or grand canonical ensemble
because the photons are continuously absorbed and emitted by the walls of the container and hence
their number is not conserved. This lack of a conservation law for the number of particles implies
that the chemical potential vanishes. Hence the Bose-Einstein distribution in (6.85) reduces to

nk =
1

eβǫk − 1
(Planck distribution) (6.125)

for blackbody radiation.

The result (6.125) can be understood by simple considerations. As we have mentioned, equi-
librium is established and maintained by the interactions between the photons and the atoms of
the wall in the enclosure. The number N of photons in the cavity cannot be imposed externally
on the system and is fixed by the temperature T of the walls and the volume V enclosed. Hence,
the free energy F for photons cannot depend on N because the latter is not a thermodynamic
variable, and we have µ = ∂F/∂N = 0. If we substitute µ = 0 into the general result (6.84) for
the Bose-Einstein distribution, we find that the mean number of photons in single particle state k

is given by

nk =
1

eβǫk − 1
, (6.126)

in agreement with (6.125).

To see how (6.126) follows from the canonical ensemble, consider a system in equilibrium with
a heat bath at temperature T . Because there is no constraint on the total number of photons, the
number of photons in each single particle microstate is independent of the number of photons in
all the other single particle microstates. Thus, the partition function is the product of the single
particle state partition functions Zk(T, V ) for each state in the same way as the partition function
for a collection of noninteracting spins is the product of the partition functions for each spin. We
have

Zk(T, V ) =

∞
∑

nk=0

e−βnkǫk . (6.127)

Because the sum in brackets in (6.127) is a geometric series, we obtain

Zk(T, V ) =
1

1 − e−βǫk
. (6.128)

In the canonical ensemble the mean number of photons in the single particle microstate k is
given by

nk =

∑∞
nk=0 nke

−βnkǫk

∑∞
nk=0 e

−βnkǫk
(6.129a)

=
∂ lnZk

∂(−βǫk)
. (6.129b)
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We have from (6.128) and (6.129b)

nk =
∂

∂(−βǫk)

[

− ln (1 − e−βǫk)
]

(6.130a)

=
e−βǫk

1 − e−βǫk
=

1

eβǫk − 1
. (6.130b)

Planck’s theory of blackbody radiation follows from the form of the density of states for
photons found in (6.100). The number of photons with energy in the range ǫ to ǫ+ dǫ is given by

N(ǫ) dǫ = n(ǫ)g(ǫ) dǫ =
V

π2~3c3
ǫ2 dǫ

eβǫ − 1
. (6.131)

If we substitute ǫ = hν on the right-hand side of (6.131), we find that the number of photons in
the frequency range ν to ν + dν is given by

N(ν) dν =
8πV

c3
ν2 dν

eβhν − 1
. (6.132)

The distribution of radiated energy is obtained by multiplying (6.132) by hν:

E(ν)dν = hνN(ν) dν =
8πhV ν3

c3
dν

eβhν − 1
. (6.133)

Equation (6.133) gives the energy radiated by a blackbody of volume V in the frequency range
between ν and ν + dν. The energy per unit volume u(ν) is given by

u(ν) =
8πhν3

c3
1

eβhν − 1
. (Planck’s radiation law) (6.134)

We can change variables to ǫ = hν and write the energy density as

u(ǫ) =
8π

(hc)3
ǫ3

eǫ/kT − 1
. (6.135)

The physical system that most closely gives the spectrum of a black body is the spectrum
of the cosmic microwave background, which fits the theoretical spectrum of a blackbody better
than the best blackbody spectrum that can be made in a laboratory. In contrast, a piece of hot,
glowing firewood is not really in thermal equilibrium, and the spectrum of glowing embers is only
a crude approximation to blackbody spectrum. The existence of the cosmic microwave background
spectrum and its fit to the blackbody spectrum is compelling evidence that the universe experienced
a Big Bang.5

5The universe is filled with electromagnetic radiation with a distribution of frequencies given by (6.133) with
T ≈ 2.725 K. The existence of the background radiation is a remnant from a time when the universe was composed
primarily of electrons and protons at a temperature of about 3000 K. This plasma of electrons and protons interacted
strongly with the electromagnetic radiation over a wide range of frequencies, so that the matter and radiation
reached thermal equilibrium. As the universe expanded, the plasma cooled until it became energetically favorable
for electrons and protons to combine to form hydrogen atoms. Atomic hydrogen interacts with radiation only at
the frequencies of the hydrogen spectral lines. As a result most of the radiation energy was effectively decoupled
from matter so that its temperature is independent of the temperature of the hydrogen atoms. The background
radiation is now at about 2.725 K because of the expansion of the universe. This expansion causes the radiation
to be redshifted. The temperature of the cosmic radiation background will continue to decrease as the universe
expands.
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Problem 6.23. Wien’s displacement law

The maximum of u(ν) shifts to higher frequencies with increasing temperature. Show that the
maximum of u can be found by solving the equation

(3 − x)ex = 3, (6.136)

where x = βhνmax. Solve (6.136) numerically for x and show that

hνmax

kT
= 2.822. (Wien’s displacement law) (6.137)

Problem 6.24. Derivation of the Rayleigh-Jeans and Wien’s laws

(a) Do a change of variables in (6.134) to find the energy emitted by a blackbody at a wavelength
between λ and λ+ dλ.

(b) Determine the limiting behavior of your result in part (a) for long wavelengths. This limit is
called the Rayleigh-Jeans law and is given by

u(λ)dλ =
8πkT

λ4
dλ. (6.138)

Does this form involve Planck’s constant? The result in (6.138) was originally derived from
purely classical considerations.

(c) Classical theory predicts what is known as the ultraviolet catastrophe, namely that an infinite
amount of energy is radiated at high frequencies or short wavelengths. Explain how (6.138)
would give an infinite result for the total radiated energy, and thus the classical result cannot
be correct for all wavelengths.

(d) Determine the limiting behavior of u(λ) for short wavelengths. This behavior is known as
Wien’s law after Wilhelm Wien who found it by finding a mathematical form to fit the exper-
imental data.

Problem 6.25. Thermodynamics of blackbody radiation

Use the various thermodynamic relations to show that

E = V

∫ ∞

0

u(ν) dν =
4σ

c
V T 4. (6.139a)

Ω = F = −4σ

3c
V T 4. (6.139b)

S =
16σ

3c
V T 3. (6.139c)

P =
4σ

3c
T 4 =

1

3

E

V
. (6.139d)

G = F + PV = 0. (6.139e)
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The free energy F in (6.139b) can be calculated from Z starting from (6.128) and using (6.100).
The Stefan-Boltzmann constant σ is given by

σ =
2π5k4

15h3c2
. (6.140)

The integral
∫ ∞

0

x3 dx

ex − 1
=
π4

15
. (6.141)

is evaluated in Appendix A.

The relation (6.139a) between the total energy and the temperature is known as the Stefan-
Boltzmann law. It was derived based on thermodynamic considerations in Section 2.21.

Problem 6.26. Mean number of photons

Show that the total mean number of photons in an enclosure of volume V is given by

N =
V

π2c3

∫ ∞

0

ω2dω

e~ω/kT − 1
=
V (kT )3

π2c3~3

∫ ∞

0

x2dx

ex − 1
. (6.142)

The integral in (6.142) can be expressed in terms of known functions (see Appendix A). The result
is

∫ ∞

0

x2dx

ex − 1
= 2 × 1.202. (6.143)

Hence N depends on T as

N = 0.244V
(kT

~c

)3

. (6.144)

6.8 The Ideal Fermi Gas

The low temperature properties of metals are dominated by the behavior of the conduction elec-
trons. Given that there are Coulomb interactions between the electrons as well as interactions
between the electrons and the positive ions of the lattice, it is remarkable that the free electron

model in which the electrons are treated as an ideal gas of fermions near zero temperature is an
excellent model of the conduction electrons in a metal under most circumstances.6 In the following,
we investigate the properties of an ideal Fermi gas and briefly discuss its applicability as a model
of electrons in metals.

As we will see in Problem 6.27, the thermal de Broglie wavelength of the electrons in a typical
metal is much larger than the mean interparticle spacing, and hence we must treat the electrons
using Fermi statistics. When a system is dominated by quantum mechanical effects, it is said to
be degenerate.

6The idea that a system of interacting electrons at low temperatures can be understood as a noninteracting gas
of quasiparticles is due to Lev Landau (1908–1968), the same Landau for whom the thermodynamic potential in the
grand canonical ensemble is named. Landau worked in many fields including low temperature physics, atomic and
nuclear physics, condensed matter physics, and plasma physics. He was awarded the 1962 Nobel Prize for Physics
for his work on superfluidity. He was also the co-author of ten widely used graduate-level textbooks on various areas
of theoretical physics.
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Figure 6.3: The Fermi-Dirac distribution at T = 0 (dotted line) and T ≪ TF (solid line). The
form of n(ǫ) for T > 0 is based on the assumption that µ is unchanged for T ≪ TF . Note that the
area under the dotted line (n(ǫ) at T = 0) is approximately equal to the area under the solid line
(n(ǫ) for T ≪ TF ).

6.8.1 Ground-state properties

We first discuss the noninteracting Fermi gas at T = 0. From (6.78) we see that the zero temper-
ature limit (β → ∞) of the Fermi-Dirac distribution is

n(ǫ) =

{

1 for ǫ < µ

0 for ǫ > µ.
(6.145)

That is, all states whose energies are below the chemical potential are occupied, and all states
whose energies are above the chemical potential are unoccupied. The Fermi distribution at T = 0
is shown in Figure 6.3.

The consequences of (6.145) are easy to understand. At T = 0, the system is in its ground

state, and the particles are distributed among the single particle states so that the total energy of
the gas is a minimum. Because we may place no more than one particle in each state, we need
to construct the ground state of the system by adding a particle into the lowest available energy
state until we have placed all the particles. To find the value of µ(T = 0), we write

N =

∫ ∞

0

n(ǫ)g(ǫ) dǫ −→
T → 0

∫ µ(T=0)

0

g(ǫ) dǫ = V

∫ µ(T=0)

0

(2m)3/2

2π2~3
ǫ1/2 dǫ. (6.146)

We have substituted the electron density of states (6.105) in (6.146). The chemical potential at
T = 0 is determined by requiring the integral to give the desired number of particles N . Because
the value of the chemical potential at T = 0 will have special importance, it is common to denote
it by ǫF :

ǫF ≡ µ(T = 0), (6.147)

where ǫF , the energy of the highest occupied state, is called the Fermi energy.

The integral on the right-hand side of (6.146) gives

N =
V

3π2

(2mǫF
~2

)3/2

. (6.148)
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From (6.148) we have that

ǫF =
~

2

2m
(3π2ρ)2/3, (Fermi energy) (6.149)

where the density ρ = N/V . It is convenient to write ǫF = p2
F /2m where pF is known as the Fermi

momentum. It follows that the Fermi momentum pF is given by

pF = (3π2ρ)1/3
~. (Fermi momentum) (6.150)

The Fermi momentum can be estimated by using the de Broglie relation p = h/λ and taking
λ ∼ ρ−1/3, the mean distance between particles. That is, the particles are “localized” within a
distance of order ρ−1/3.

At T = 0 all the states with momentum less that pF are occupied and all the states above this
momentum are unoccupied. The boundary in momentum space between occupied and unoccupied
states at T = 0 is called the Fermi surface. For an ideal Fermi gas in three dimensions the Fermi
surface is the surface of a sphere with radius pF .

We can understand why the chemical potential at T = 0 is positive by reasoning similar to
that given on page 319 for an ideal classical gas. At T = 0 the contribution of T∆S to the free
energy vanishes, and no particle can be added with energy less than µ(T = 0). Thus, µ(T = 0) > 0.
In contrast, we argued that µ(T > 0) is much less than zero for an ideal classical gas due to the
large change in the entropy when adding (or removing) a particle.

We will find it convenient in the following to introduce a characteristic temperature, the Fermi
temperature TF , by

TF = ǫF /k. (6.151)

The values of TF for typical metals is given in Table 6.3.

A direct consequence of the fact that the density of states in three dimensions is proportional
to ǫ1/2 is that the mean energy per particle at T = 0 is 3ǫF/5:

E

N
=

∫ ǫF

0 ǫ g(ǫ) dǫ
∫ ǫF

0 g(ǫ) dǫ
=

∫ ǫF

0 ǫ3/2dǫ
∫ ǫF

0 ǫ1/2dǫ
(6.152a)

=
2
5ǫ

5/2
F

2
3ǫ

3/2
F

=
3

5
ǫF . (6.152b)

The total energy is given by

E =
3

5
NǫF =

3

5
N(3π2)2/3 ~

2

2m
ρ2/3. (6.153)

The pressure can be immediately found from the general relation PV = 2E/3 (see (6.110))
for an nonrelativistic ideal gas at any temperature. Alternatively, the pressure can be found from
the relation

P = −∂F
∂V

=
2

3

E

V
, (6.154)
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element ǫF (eV) TF (104 K)
Li 4.7 5.5
Na 3.2 3.8
Al 11.7 13.6
Cu 7 8.2
Ag 5.5 6.4

Table 6.3: Values of the Fermi energy and Fermi temperature for several metals at room temper-
ature and atmospheric pressure.

because the free energy is equal to the total energy at T = 0. The result is that the pressure at
T = 0 is given by

P =
2

5
ρǫF . (6.155)

The fact that the pressure is nonzero even at zero temperature is a consequence of the Pauli
exclusion principle, which allows only one particle to have zero momentum (two electrons if the
spin is considered). All other particles have finite momentum and hence give rise to a nonzero
pressure at T = 0.

Another way to understand the relation (6.155) is to recall the classical pressure equation of
state, P = ρkT , which would predict that the pressure is zero at zero temperature. However, if
we replace T by the Fermi temperature TF , then P ∝ ρkTF = ρǫF , which is the same as (6.155)
except for a numerical factor.

Problem 6.27. Order of magnitude estimates

(a) Verify that the values of ǫF given in electon volts (eV) leads to the values of TF in Table 6.3.

(b) Compare the values of TF in Table 6.3 to room temperature. What is the value of kT in eV
at room temperatures?

(c) Given the data in Table 6.3 verify that the electron density for Li and Cu is ρ = 4.7×1028 m−3

and ρ = 8.6 × 1028 m−3, respectively.

(d) What is the mean distance between the electrons for Li and Cu?

(e) Use the fact that the mass of an electron is 9.1×10−31 kg to estimate the de Broglie wavelength
corresponding to an electron with energy comparable to the Fermi energy.

(f) Compare your result for the de Broglie wavelength which you found in part (e) to the mean
interparticle spacing which you found in part (d).

Problem 6.28. Landau potential at zero temperature

From (6.107) the Landau potential for an ideal Fermi gas at arbitrary T can be expressed as

Ω = −kT
∫ ∞

0

g(ǫ) ln[1 + e−β(ǫ−µ)] dǫ. (6.156)
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To obtain the T = 0 limit of Ω, we have that ǫ < µ in (6.156), β → ∞, and hence ln[1+e−β(ǫ−µ)] →
ln e−β(ǫ−µ) = −β(ǫ− µ). Hence, show that

Ω =
(2m)3/2V

2π2~2

∫ ǫF

0

dǫ ǫ1/2
(

ǫ− ǫF
)

. (6.157)

Calculate Ω and determine the pressure at T = 0.

Problem 6.29. Show that the limit (6.145) for n(ǫ) at T = 0 follows only if µ > 0.

6.8.2 Low temperature properties

One of the greatest successes of the free electron model and Fermi-Dirac statistics is the explanation
of the temperature dependence of the heat capacity of a metal. If the electrons behaved like a
classical noninteracting gas, we would expect a contribution to the heat capacity equal to 3Nk/2
as T → 0. Instead, we typically find a very small contribution to the heat capacity which is linear
in the temperature, a result that cannot be explained by classical statistical mechanics. Before we
derive this result, we first give a qualitative argument for the low temperature dependence of the
heat capacity of an ideal Fermi gas.

As we saw in Table 6.3, room temperature is much less than the Fermi temperature of the
conduction electrons in a metal, that is, T ≪ TF . Hence we should be able to understand the
behavior of an ideal Fermi gas at room temperature in terms of its behavior at zero temperature.
Because there is only one characteristic energy in the system (the Fermi energy), the criterion for
low temperature is that T ≪ TF . Hence the conduction electrons in a metal may be treated as if
they are effectively near zero temperature even though the metal is at room temperature.

For 0 < T ≪ TF , the electrons that are within order kT below the Fermi surface have enough
energy to occupy the microstates with energies that are order kT above the Fermi energy. In
contrast, the electrons that are deep within the Fermi surface do not have enough energy to be
excited to microstates above the Fermi energy. Hence, only a small fraction of order T/TF of the
N electrons have a reasonable probability of being excited, and the remainder of the electrons
remain unaffected as the temperature is increased from T = 0. This reasoning leads us to write
the heat capacity of the electrons as CV ∼ Neffk, where Neff is the number of electrons that can
be excited by exchanging energy with the heat bath. For a classical system, Neff = N , but for a
Fermi system at T ≪ TF , we have that Neff ∼ N(T/TF ). Hence, we expect that the temperature
dependence of the heat capacity is given by

CV ∼ Nk
T

TF
. (T ≪ TF ) (6.158)

From (6.158) we see that the contribution to the heat capacity from the electrons is much smaller
than the prediction of the equipartition theorem and is linear in T as is found empirically. As an
example, the measured specific heat of copper for T < 1K is dominated by the contribution of the
electrons and is given by CV /kN = 0.8 × 10−4 T .

Our qualitative argument for the low temperature behavior of CV implicitly assumes that µ(T )
is unchanged for T ≪ TF . We can understand why µ(T ) remains unchanged as T is increased
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slightly from T = 0 by the following reasoning. The probability that a single particle state is empty
is

1 − n(ǫ) = 1 − 1

eβ(ǫ−µ) + 1
=

1

eβ(µ−ǫ) + 1
. (6.159)

We see from (6.159) that for a given distance from µ, the probability that a particle is lost from
a previously occupied single particle state below µ equals the probability that a previously empty
single particle state is occupied: n(ǫ−µ) = 1−n(µ− ǫ). This property implies that the area under
the step function at T = 0 is nearly the same as the area under n(ǫ) for T ≪ TF (see Figure 6.3).
That is, n(ǫ) is symmetrical about ǫ = µ. If we make the additional assumption that the density
of states changes very little in the region where n departs from a step function, we see that the
mean number of particles lost from the previously occupied states just balances the mean number
gained by the previously empty states. Hence, we conclude that for T ≪ TF , we still have the
correct number of particles without any need to change the value of µ.

Similar reasoning implies that µ(T ) must decrease slightly as T is increased from zero. Suppose
that µ were to remain constant as T is increased. Because the density of states is an increasing
function of ǫ, the number of electrons with energy ǫ > µ would be greater than the number lost
with ǫ < µ. As a result, we would increase the number of electrons by increasing T . To prevent
such an nonsensical increase, µ has to reduce slightly. In addition, we know that because µ≪ 0 for
high temperatures where the system behaves like an ideal classical gas, µ(T ) must pass through
zero. At what temperature would you estimate that µ(T ) ≈ 0?

In Problem 6.30 we will determine µ(T ) by evaluating the integral in (6.160) numerically. Then
we will evaluate the integral analytically for T ≪ TF and show that µ(T ) − µ(T = 0) ∼ (T/TF )2.
Hence to first order in T/TF , µ is unchanged.

Problem 6.30. Numerical evaluation of the chemical potential for an ideal Fermi gas

To find the chemical potential for T > 0, we need to find the value of µ that yields the desired
mean number of particles. We have

N =

∫ ∞

0

n(ǫ)g(ǫ)dǫ =
V (2m)3/2

2π2~3

∫ ∞

0

ǫ1/2dǫ

eβ(ǫ−µ) + 1
, (6.160)

where we have used (6.105) for g(ǫ). It is convenient to let ǫ = xǫF , µ = µ∗ǫF , and T ∗ = kT/ǫF ,
and rewrite (6.160) as

ρ =
N

V
=

(2m)3/2

2π2~3
ǫ
3/2
F

∫ ∞

0

x1/2 dx

e(x−µ∗)/T∗ + 1
, (6.161)

or

1 =
3

2

∫ ∞

0

x1/2 dx

e(x−µ∗)/T∗ + 1
, (6.162)

where we have substituted (6.149) for ǫF . To find the dependence of µ∗ on T ∗ and hence µ on T
use program IdealFermiGasIntegral to evaluate the integral on the right-hand side of (6.162)
numerically.

(a) Start with T ∗ = 0.2 and find µ∗ such that (6.162) is satisfied. (Recall that µ∗ = 1 at T ∗ = 0.)
Does µ∗ initially increase or decrease as T is increased from zero? What is the sign of µ∗ for
T ∗ ≫ 1?
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(b) At what value of T ∗ is µ∗ ≈ 0?

(c) Given the value of µ∗(T ∗), the program computes the numerical value of E(T ). Describe its
qualitative T -dependence and the T -dependence of CV .

We now derive a quantitative expression for CV that is applicable for temperatures T ≪ TF .7

The increase ∆E = E(T ) − E(T = 0) in the total energy is given by

∆E =

∫ ∞

0

ǫ n(ǫ)g(ǫ) dǫ−
∫ ǫF

0

ǫ g(ǫ) dǫ, (6.163a)

which we rewrite as

=

∫ ǫF

0

ǫ[n(ǫ) − 1]g(ǫ) dǫ+

∫ ∞

ǫF

ǫ n(ǫ)g(ǫ) dǫ. (6.163b)

We multiply the identity

N =

∫ ∞

0

n(ǫ)g(ǫ)dǫ =

∫ ǫF

0

g(ǫ) dǫ (6.164)

by ǫF and write the integral on the left-hand side as a sum of two contributions to obtain

∫ ǫF

0

ǫF n(e)g(ǫ) dǫ+

∫ ∞

ǫF

ǫF n(e)g(ǫ) dǫ =

∫ ǫF

0

ǫF g(ǫ) dǫ, (6.165a)

or
∫ ǫF

0

ǫF [n(ǫ) − 1]g(ǫ) dǫ+

∫ ∞

ǫF

ǫFn(ǫ)g(ǫ) dǫ = 0. (6.165b)

We can use (6.165b) to rewrite (6.163b) as

∆E =

∫ ∞

ǫF

(ǫ− ǫF )n(ǫ)g(ǫ)dǫ+

∫ ǫF

0

(ǫF − ǫ)[1 − n(ǫ)]g(ǫ)dǫ. (6.166)

The heat capacity is found by differentiating ∆E with respect to T . The only temperature-
dependent term in (6.166) is n(ǫ). Hence, we can write CV as

CV =

∫ ∞

0

(ǫ− ǫF )
dn(ǫ)

dT
g(ǫ)dǫ. (6.167)

For T ≪ TF , the derivative dn/dT is large only for ǫ near ǫF . Hence it is a good approximation
to evaluate the density of states g(ǫ) at ǫ = ǫF and take it outside the integral:

CV = g(ǫF )

∫ ∞

0

(ǫ− ǫF )
dn

dT
dǫ. (6.168)

We can also ignore the temperature-dependence of µ in n(ǫ) and replace µ by ǫF . With this
approximation we have

dn

dT
=
dn

dβ

dβ

dT
=

1

kT 2

(ǫ− ǫF )eβ(ǫ−ǫF )

[eβ(ǫ−µ) + 1]2
. (6.169)

7The following derivation is adapted from Kittel.
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We next let x = (ǫ− ǫF )/kT and use (6.168) and (6.169) to write CV as

CV = k2Tg(ǫF )

∫ ∞

−βǫF

x2ex

(ex + 1)2
dx. (6.170)

We can replace the lower limit by −∞ because the factor ex in the integrand is negligible at
x = −βǫF for low temperatures. If we use the integral

∫ ∞

−∞

x2 ex

(ex + 1)2
dx =

π2

3
, (6.171)

we can write the heat capacity of an ideal Fermi gas as

CV =
1

3
π2g(ǫF )k2T. (6.172)

It is straightforward to show that

g(ǫF ) =
3N

2ǫF
=

3N

2kTF
, (6.173)

and we arrive at the desired result

CV =
π2

2
Nk

T

TF
. (T ≪ TF ) (6.174)

A more detailed discussion of the low temperature properties of an ideal Fermi gas is given in
Section 6.11.2. For convenience, we summarize the main results here:

Ω = −2

3

21/2V m3/2

π2~3

[2

5
µ5/2 +

π2

4
(kT )2µ1/2

]

. (6.175)

N = −∂Ω

∂µ
=
V (2m)3/2

3π2~3

[

µ3/2 +
π2

8
(kT )2µ−1/2

]

. (6.176)

The results (6.175) and (6.176) are in the grand canonical ensemble in which the chemical potential
is fixed. However, most experiments are done on a sample with a fixed number of electrons, and
hence µ must change with T to keep N fixed. To find this dependence we rewrite (6.176) as

3π2
~

3ρ

(2m)3/2
= µ3/2

[

1 +
π2

8
(kT )2µ−2

]

, (6.177)

where ρ = N/V . If we raise both sides of (6.177) to the 2/3 power and use (6.149), we have

µ =
32/3π4/3

~
2ρ2/3

2m

[

1 +
π2

8
(kT )2µ−2

]−2/3

, (6.178a)

= ǫF

[

1 +
π2

8
(kT )2µ−2

]−2/3

. (6.178b)
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In the limit of T → 0, µ = ǫF as expected. From (6.178b) we see that the first correction for low
temperatures is given by

µ(T ) = ǫF

[

1 − 2

3

π2

8

(kT )2

µ2

]

= ǫF

[

1 − π2

12

( T

TF

)2]

, (6.179)

where we have made the expansion (1 + x)n ≈ 1 + nx and replaced µ on the right-hand side by
ǫF = kTF .

From (6.179) we see that the chemical potential decreases with temperature to keep N fixed,
but the decrease is second order in T/TF (rather than first order), consistent with our earlier
qualitative considerations. The explanation for the decrease in µ(T ) is that more particles move
from energy states below the Fermi energy to energy states above the Fermi energy as the temper-
ature increases. Because the density of states increases with energy, it is necessary to decrease the
chemical potential to keep the number of particles constant. As the temperature becomes larger
than the Fermi temperature, the chemical potential changes sign and becomes negative (see in
Problem 6.30).

Problem 6.31. Low temperature behavior

(a) Fill in the missing steps in (6.163)–(6.174).

(b) Use (6.175) and (6.179) to show that the mean pressure for T ≪ TF is given by

P =
2

5
ρǫF

[

1 +
5π2

12

( T

TF

)2

+ . . .
]

. (6.180)

(c) Use the general relation between E and PV to show that

E =
3

5
NǫF

[

1 +
5π2

12

( T

TF

)2

+ . . .
]

. (6.181)

(d) For completeness, show that the low temperature behavior of the entropy is given by

S =
π2

2
Nk

T

TF
. (6.182)

We see from (6.174) that the conduction electrons of a metal contribute a linear term to the
heat capacity. In Section 6.9 we shall see that the contribution from lattice vibrations contributes
a term proportional to T 3 to CV at low T . Thus for sufficiently low temperature, the linear term
due to the conduction electrons dominates.

Problem 6.32. Effective electron mass

From Table 6.3 we see that TF = 8.5× 104 K for copper. Use (6.174) to find the predicted value of
C/NkT for copper. How does this value compare with the experimental value C/NkT = 8×10−5?
It is remarkable that the theoretical prediction agrees so well with the experimental result based on
the free electron model. Show that the small discrepancy can be removed by defining an effective
mass m∗ of the conduction electrons equal to ≈ 1.3me, where me is the mass of the electron. What
factors might account for the effective mass being greater than me?
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Problem 6.33. Temperature dependence of the chemical potential in two dimensions

Consider a system of electrons restricted to a two-dimensional surface of area A. Show that the
mean number of electrons can be written as

N =
mA

π~2

∫ ∞

0

dǫ

eβ(ǫ−µ) + 1
. (6.183)

The integral in (6.183) can be evaluated in closed form using
∫

dx

1 + aebx
=

1

b
ln

ebx

1 + aebx
+ constant. (6.184)

(a) Show that

µ(T ) = kT ln
[

eρπ~
2/mkT − 1

]

, (6.185)

where ρ = N/A.

(b) What is the value of the Fermi energy ǫF = µ(T = 0)? What is the value of µ for T ≫ TF ?

(c) Plot µ versus T and discuss its qualitative dependence on T .

6.9 The Heat Capacity of a Crystalline Solid

The free electron model of a metal successfully explains the temperature dependence of the con-
tribution to the heat capacity from the electrons. What about the contribution from the ions? In
a crystal each ion is localized about its lattice site and oscillates due to spring-like forces between
nearest-neighbor atoms. Classically, we can regard each atom of the solid as having six quadratic
contributions to the energy, three of which contribute 1

2kT to the mean kinetic energy and three
contribute 1

2kT to the mean potential energy. Hence, the heat capacity at constant volume of a
homogeneous isotropic solid is given by CV = 3Nk, independent of the nature of the solid. This
behavior of CV agrees with experiment remarkably well at high temperatures. (The meaning of
high temperature will be defined later in terms of the parameters of the solid.) At low temper-
atures the classical behavior is an overestimate of the experimentally measured heat capacity for
crystalline solids, which is found to be proportional to T 3. To understand this low temperature
behavior, we first consider the Einstein model and then the more sophisticated Debye model of a
solid.

6.9.1 The Einstein model

The reason why the heat capacity decreases at low temperature is that the oscillations of the
crystal must be treated quantum mechanically rather than classically. The simplest model of a
solid, proposed by Einstein in 1906, is that each atom behaves like three independent harmonic
oscillators each of frequency ω. Because the 3N identical oscillators are independent and are
associated with distinguishable sites, we need only to find the thermodynamic functions of one of
them. The partition function for one oscillator in one dimension is (see (4.129))

Z1 =
e−β~ω/2

1 − e−β~ω
. (6.186)
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Other thermodynamic properties of one oscillator are given by

f = −kT lnZ1 =
~ω

2
+ kT ln[1 − e−β~ω] (6.187)

s = − ∂f

∂T
= −k ln[1 − e−β~ω] + kβ~ω

1

eβ~ω − 1
(6.188)

e = f + Ts = (n+ 1/2)~ω, (6.189)

where

n =
1

eβ~ω − 1
. (6.190)

Note the form of n, which is identical to the Bose-Einstein distribution with µ = 0. We can think
of n as the mean number of quanta (phonons). Because the number of phonons is not conserved,
µ = 0 in the Bose-Einstein distribution. To obtain extensive quantities such as F , S, and E, we
multiply the single particle values by 3N . For example, the heat capacity of an Einstein solid is
given by

CV =
(∂E

∂T

)

V
= 3N

( ∂e

∂T

)

V
= 3Nk(β~ω)2

eβ~ω

[eβ~ω − 1]2
. (6.191)

It is convenient to introduce the Einstein temperature

kTE = ~ω, (6.192)

and express CV as

CV = 3Nk
(TE

T

)2 eTE/T

[eTE/T − 1]2
. (6.193)

The limiting behaviors of CV from (6.191) or (6.193) is

CV → 3Nk, (T ≫ TE) (6.194a)

and

CV → 3Nk
(

~ω

kT

)2

e−~ω/kT . (T ≪ TE) (6.194b)

The calculated heat capacity as T → 0 is consistent with the third law of thermodynamics and
is not very different from the heat capacity actually observed for insulating solids. However, it
decreases too quickly at low temperatures and does not agree with the observed low temperature
behavior CV ∝ T 3 satisfied by all insulating solids.

Problem 6.34. Limiting behavior of the heat capacity in the Einstein model

Derive the limiting behavior of CV given in (6.194).

6.9.2 Debye theory

The Einstein model is based on the idea that each atom behaves like an harmonic oscillator whose
motion is independent of the other atoms. A better approximation was made by Debye (1912) who
observed that solids can carry sound waves. Because waves are inherently a collective phenomena
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and are not associated with the oscillations of a single atom, it is better to think of a crystalline
solid in terms of the collective motion rather than the independent motions of the atoms. The
collective or cooperative motion corresponds to the 3N normal modes of the system, each with its
own frequency.

For each value of the wavevector ~k there are three sound waves in a solid – one longitudinal
with velocity cℓ and two transverse with velocity ct. (Note that ct and cℓ are speeds of sound, not
light.) The density of states of each mode is determined by the same analysis as for photons. From
(6.99) we see that the density of states of the system is given by

g(ω)dω = (2gt + gℓ)dω =
V ω2dω

2π2

( 2

c3t
+

1

c3ℓ

)

. (6.195)

It is convenient to define a mean speed of sound c by the relation

3

c3
=

2

c3t
+

1

c3ℓ
, (6.196)

so that the density of states can be written as

g(ω) dω =
3V ω2dω

2π2c3
. (6.197)

The total energy is given by

E =

∫

~ω n(ω)g(ω) dω,=
3V ~

2π2c3

∫

ω3 dω

eβ~ω − 1
. (6.198)

Equation (6.198) does not take into account the higher frequency modes that do not satisfy
the linear relation ω = kc. For reasons that we will discuss shortly we will use a high frequency
cutoff at ω = ωD such that for the frequencies included ω ≈ kc. Because the low temperature heat
capacity depends only on the low frequency modes, which we have treated correctly using (6.197),
it follows that we can obtain a good approximation to the heat capacity by extending the integral
in (6.197) to a maximum frequency ωD which is determined by requiring that the total number of
modes be 3N . That is, we assume that g(ω) ∝ ω2 for ω < ωD such that

3N =

∫ ωD

0

g(ω) dω. (6.199)

If we substitute (6.197) into (6.199), we find that

ωD = 2πc
( 3ρ

4π

)1/3

. (6.200)

It is convenient to relate the maximum frequency ωD to a characteristic temperature, the Debye
temperature TD, by the relation

~ωD = kTD. (6.201)

The thermal energy can now be expressed as

E =
3V ~

2π2c3

∫ kTD/~

0

ω3 dω

eβ~ω − 1
(6.202a)

= 9NkT
( T

TD

)3
∫ TD/T

0

x3 dx

ex − 1
. (6.202b)
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In the high temperature limit, TD/T → 0, and the important contribution to the integral in
(6.202) comes from small x. Because the integrand is proportional x2 for small x, the integral is
proportional to (T/TD)−3, and hence the energy is proportional to T . Thus in the high temperature
limit, the heat capacity is independent of the temperature, consistent with the law of Dulong and
Petit. In the low temperature limit, TD/T → ∞, and the integral in (6.202) is independent of
temperature. Hence in the limit T → 0, the energy is proportional to T 4 and the heat capacity is
proportional to T 3, consistent with experimental results at low temperatures.

Problem 6.35. More on the Einstein and Debye theories

(a) Determine the wavelength λD corresponding to ωD and show that this wavelength is approx-
imately equal to a lattice spacing. This equality provides another justification for a high
frequency cutoff because the atoms in a crystal cannot oscillate with a wavelength smaller
than a lattice spacing.

(b) Show explicity that that the energy in (6.202) is independent of T for high temperatures and
proportional to T 4 for low temperatures.

(c) Plot the temperature dependence of the mean energy as given by the Einstein and Debye
theories on the same graph and compare their predictions.

(d) Derive an expression for the mean energy analogous to (6.202) for one- and two-dimensional
crystals. Then find explicit expressions for the high and low temperature dependence of the
specific heat on the temperature.

6.10 The Ideal Bose Gas and Bose Condensation

The historical motivation for discussing the ideal Bose gas is that this idealized system exhibits
Bose-Einstein condensation. The original prediction of Bose-Einstein condensation by Satyendra
Nath Bose and Albert Einstein in 1924 was considered by some to be a mathematical artifact
or even a mistake. In the 1930s Fritz London realized that superfluid liquid helium could be
understood in terms of Bose-Einstein condensation. However, the analysis of superfluid liquid
helium is complicated by the fact that the helium atoms in a liquid strongly interact with one
another. For many years scientists tried to create a Bose condensate in a less complicated system.
In 1995 several groups used laser and magnetic traps to create a Bose-Einstein condensate of alkali
atoms at approximately 10−6 K. In these systems the interaction between the atoms is very weak
so that the ideal Bose gas is a good approximation and is no longer only a textbook example.8

Although the form of the Landau potential for the ideal Bose gas and the ideal Fermi gas
differs only superficially (see (6.86)), the two systems behave very differently at low temperatures.
The main reason is the difference in the ground states; that is, for a Bose system there is no limit
to the number of particles in a single particle state.

8The 2001 Nobel Prize for Physics was awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman for achieving
Bose-Einstein condensation in dilute gases of alkali atoms and for early fundamental studies of the properties of the
condensate.
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The ground state of an ideal Bose gas is easy to construct. We can minimize the total energy
by putting all the particles into the single particle state of lowest energy:

ǫ0 =
π2

~
2

2mL2
(12 + 12 + 12) =

3π2
~

2

2mL2
. (6.203)

The energy of the ground state is given by Nǫ0. For convenience, we will choose the energy scale
such that the ground state energy is zero. The behavior of the system cannot depend on the choice
of the zero of energy.

The behavior of an ideal Bose gas can be understood by considering the temperature depen-
dence of N(T, V, µ):

N =
∑

k

1

eβ(ǫk−µ) − 1
→

∫ ∞

0

n(ǫ)g(ǫ)dǫ (6.204)

=
V

4π2~3
(2m)3/2

∫ ∞

0

ǫ1/2 dǫ

eβ(ǫ−µ) − 1
. (6.205)

For simplicity, we will assume that the gas of bosons has zero spin, the same value of the spin as
the helium isotope 4He.

To understand the nature of an ideal Bose gas at low temperatures, we will assume that the
mean density of the system is fixed and consider the effect of lowering the temperature. The correct
choice of µ gives the desired value of ρ when substituted into (6.206).

ρ =
N

V
=

(2m)3/2

4π2~3

∫ ∞

0

ǫ1/2 dǫ

eβ(ǫ−µ) − 1
. (6.206)

We know that the chemical potential µ of an ideal Bose gas must be negative at all temper-
atures (see (6.80)). We also know that for high temperatures, µ reduces to the semiclassical limit
given by (6.29), which is large in magnitude and negative. To see how µ must change in (6.206)
to keep the density ρ constant as we decrease the temperature, we make the change of variables
βǫ = x and let µ→ −|µ|:

ρ =
(2mkT )3/2

4π2~3

∫ ∞

0

x1/2 dx

e(x+β|µ|) − 1
. (6.207)

As we decrease the temperature, the factor in front of the integral in (6.207) decreases and
hence the integral must increase to compensate so that the density remains fixed. Hence β|µ|
must become smaller, which implies that |µ| must become smaller. Because µ is negative for Bose-
Einstein statistics, µ becomes less negative. The integral is finite for all values of β|µ| and has its
maximum value when |µ| = 0. Thus, there is a minimum value of T such that the right-hand side
of (6.207) equals the given value of ρ. We denote this temperature by Tc and determine its value
by solving (6.207) with µ = 0:

ρ =
(2mkTc)

3/2

4π2~3

∫ ∞

0

x1/2 dx

ex − 1
. (6.208)

The definite integral in (6.208) can be written in terms of known functions (see Appendix A) and
has the value:

∫ ∞

0

x1/2 dx

ex − 1
= 2.612

π1/2

2
. (6.209)
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Hence, we obtain

kTc =
1

2.6122/3

2π~
2

m
ρ2/3. (6.210)

Problem 6.36. Relation of Tc to the zero point energy

Express (6.210) in terms of the zero point energy associated with localizing a particle of mass m
in a volume a3, where a = ρ−1/3 is the mean interparticle spacing.

Problem 6.37. Numerical evaluation of µ for an ideal Bose gas

In this problem we study the behavior of µ as a function of the temperature. Program IdealBose-

GasIntegral numerically evaluates the integral on the right-hand side of (6.206) for particular
values of β and µ. The goal is to find the value of µ for a given value of β that yields the desired
value of ρ.

To put (6.206) in a convenient form we introduce dimensionless variables and let ǫ = kTcy,
T = TcT

∗, and µ = kTcµ
∗ and rewrite (6.206) as

1 =
2

2.612
√
π

∫ ∞

0

y1/2dy

e(y−µ∗)/T∗ − 1
, (6.211a)

or

0.432

∫ ∞

0

y1/2dy

e(y−µ∗)/T∗ − 1
= 1, (6.211b)

where we have used (6.210).

(a) Fill in the missing steps and derive (6.211).

(b) The program evaluates the left-hand side of (6.211b). The idea is to find µ∗ for a given value of
T ∗ such the left-hand side of (6.211b) equals one. Begin with T ∗ = 10. First choose µ∗ = −10
and find the value of the integral. Do you have to increase or decrease the value of µ∗ to make
the numerical value of the left-hand side of (6.211b) closer to one? Change µ∗ by trial and
error until you find the desired result. You should find that µ∗ ≈ −25.2.

(c) Next choose T ∗ = 5 and find the value of µ∗ so that the left-hand side of (6.211b) equals one.
Does µ increase or decrease in magnitude? You can generate a plot of µ∗ versus T ∗ by clicking
on the Accept parameters button each time you find an approximately correct value of µ.

(d) Discuss the qualitative behavior of µ as a function of T for fixed density.

(e) Use IdealBoseGasIntegral to find the numerical value of T at which µ = 0 for ρ∗ = 1.
Confirm that your numerical value is consistent with (6.210).

Problem 6.38. Use similiar reasoning to show that the maximum density for a given temperature
is given by

ρc =
2.612

λ3
, (6.212)

where λ is given by (6.2).
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T

P

Figure 6.4: Sketch of the dependence of the pressure P on the temperature T for a typical gas and
liquid.

Problem 6.39. Show that the thermal de Broglie wavelength is comparable to the interparticle
spacing at T = Tc. What is the implication of this result?

There is no physical reason why we cannot continue lowering the temperature at fixed density
(or increasing the density at fixed temperature). Before discussing how we can resolve this difficulty,
consider a familiar situation in which an analogous phenomena occurs. Suppose that we put argon
atoms into a container of fixed volume at a given temperature. If the temperature is high enough
and the density is low enough, the argon atoms will be a gas and obey the ideal gas equation of
state which we write as P = NkT/V . If we now decrease the temperature, we expect that the
pressure will decrease. However at some temperature, this dependence will abruptly break down,
and P will stop changing as indicated in Figure 6.4. We will study this behavior of P in Chapter 7,
but you will probably recognize this behavior as a signature of the condensation of the vapor and
the existence of a phase transition from gas to liquid. That is, at a certain temperature for a fixed
density, droplets of liquid argon will begin to form in the container. As the temperature is lowered
further, the liquid droplets will grow, but the pressure will remain constant because most of the
extra particles will go into the denser liquid state.

We can describe the ideal Bose gas in the same terms, that is, in terms of a phase transition.
At a special value of T , the chemical potential stops decreasing in magnitude and reaches its limit
of µ = 0. Beyond this point, the relation (6.205) is no longer able to keep track of all the particles.

Because the particles cannot appear or disappear when we change the temperature, (6.206)
cannot be correct for temperatures T < Tc. The origin of the problem lies with the behavior of
the three-dimensional density of states g(ǫ), which is proportional to ǫ1/2 (see (6.104)). Because of
this dependence on ǫ, g(ǫ = 0) = 0, and hence our calculation of N has ignored all the particles in
the ground state. For the classical and Fermi noninteracting gas, this neglect is of no consequence.
In the classical case the mean number of particles in any microstate is much less than one, and
in the degenerate Fermi case there are only two electrons in the ground state. However, for the
noninteracting Bose gas, the mean number of particles in the ground state is given by

N0 =
1

e−βµ − 1
, (6.213)



CHAPTER 6. MANY PARTICLE SYSTEMS 340

(Remember that we have set the ground state energy ǫ0 = 0.) When T is sufficiently small, N0 will
be very large. Hence, the denominator of (6.213) must be very small, which implies that e−βµ ≈ 1
and −βµ must be very small. Therefore, we can approximate e−βµ as 1 − βµ and N0 becomes

N0 = −kT
µ

=
kT

|µ| ≫ 1. (6.214)

The chemical potential must be such that the number of particles in the ground state approaches
its maximum value which is of order N . Hence, if we were to use the integral (6.205) to calculate
N for T < Tc, we would have ignored the particles in the ground state. We have resolved the
problem – the missing particles are in the ground state! The phenomena we have described,
macroscopic occupation of the ground state, is called Bose-Einstein condensation. Macroscopic
occupation means that for T < Tc, the ratio N0/N is nonzero in the limit N → ∞.

Now that we know where the missing particles are, we can calculate the thermodynamics of
the ideal Bose gas. For T < Tc the chemical potential is zero in the thermodynamic limit, and the
mean number of particles not in the ground state is given by (6.205):

N ǫ =
V

4π2~3
(2m)3/2

∫ ∞

0

ǫ1/2 dǫ

eβǫ − 1
= N

( T

Tc

)3/2

, (T < Tc) (6.215)

where Tc is defined by (6.210). The remaining particles, which we denote as N0, are in the ground
state. Another way of understanding (6.215) is that for T < Tc, µ must be zero because the number
of particles not in the ground state is determined by the temperature. We write N = N0 + N ǫ,
and

N0 = N −N ǫ = N
[

1 −
( T

Tc

)3/2]

. (T < Tc) (6.216)

Because the energy of the gas is determined by the particles with ǫ > 0, we have for T < Tc

E =

∫ ∞

0

ǫ g(ǫ) dǫ

eβǫ − 1
=
V (mkT )3/2 kT

21/2π2~3

∫ ∞

0

x3/2 dx

ex − 1
. (6.217)

The definite integral in (6.217) is given in Appendix A:

∫ ∞

0

x3/2 dx

ex − 1
= 1.341

3π1/2

4
. (6.218)

If we substitute (6.218) into (6.217), we can write the mean energy as

E = 3
1.341

25/2π3/2

V (mkT )3/2kT

~3
= 0.1277V

m3/2(kT )5/2

~3
. (6.219)

Note that E ∝ T 5/2 for T < Tc. The heat capacity at constant volume is

CV =
∂E

∂T
= 3.2V

(mkT )3/2k

~3
, (6.220a)

or

CV = 1.9N ǫk, (6.220b)
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where we have used (6.215) for N ǫ. Note that the heat capacity has a form similar to an ideal
classical gas for which CV ∝ Nk.

The pressure of the Bose gas for T < Tc can be obtained from the general relation PV = 2E/3
for a nonrelativistic ideal gas. From (6.219) we obtain

P =
1.341

23/2π3/2

m3/2(kT )5/2

~3
= 0.085

m3/2(kT )5/2

~3
. (6.221)

Note that the pressure is proportional to T 5/2 and is independent of the density. This independence
is a consequence of the fact that the particles in the ground state do not contribute to the pressure.
If additional particles are added to the system at T < Tc, the number of particles in the single
particle state ǫ = 0 increases, but the pressure does not.

What is remarkable about the phase transition in an ideal Bose gas is that it occurs at all. That
is, unlike all other known phase transitions, its occurrence has nothing to do with the interactions
between the particles and has everything to do with the nature of the statistics. Depending on
which variables are being held constant, the transition in an ideal Bose gas is either first-order or
continuous. We postpone a discussion of the nature of first-order and continuous phase transitions
until Chapter 9 where we will discuss phase transitions in more detail. It is sufficient to mention
here that the order parameter in the ideal Bose gas can be taken to be the fraction of particles
in the ground state, and this fraction goes continuously to zero as T → Tc from below at fixed
density.

Another interesting feature of the Bose condensate is that for T < Tc, a finite fraction of
the atoms are described by the same quantum wavefunction, which gives the condensate many
unusual properties. In particular, Bose condensates have been used to produce atomic lasers –
laser-like beams in which photons are replaced by atoms – and to study fundamental processes
such as superfluidity.

Problem 6.40. Temperature dependence of the pressure

(a) Start from the classical pressure equation of state, PV = NkT , replace N by Neff for an ideal
Bose gas, and give a qualitative argument why P ∝ T 5/2 at low temperatures.

(b) Show that the ground state contribution to the pressure is given by

P0 =
kT

V
ln(N0 + 1). (6.222)

Explain why P0 can be regarded as zero and why the pressure of an Bose gas for T < Tc is
independent of the volume.

Problem 6.41. Estimate of Bose condensation temperature

(a) What is the approximate value of Tc for an ideal Bose gas at a density of ρ ≈ 125kg/m3, the
density of liquid 4He? Take m = 6.65 × 10−27 kg.

(b) The value of Tc for a collection of 87Rb (rubidium) atoms is about 280 nK (2.8×10−7 K). What
is the mean separation between the atoms?
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6.11 Supplementary Notes

6.11.1 Fluctuations in the number of particles

It is convenient to express ZG in terms of the canonical partition function ZN for N particles.
The sum over all microstates in (6.70) can first be done over all possible microstates s for a fixed
number of particles and then over all values of N :

ZG =

∞
∑

N=1

eβµN
∑

s

e−βEs , (6.223)

where Es is the energy of microstate s with N particles. The latter sum in (6.223) is the canonical
partition function for N particles, and we have

ZG =
∞
∑

N=1

eβµNZN . (6.224)

In the following we will derive a relation between the compressibility and the fluctuations of
the number of particles. The number of particles fluctuates about the mean number N which is
given by

N = kT
∂ lnZG

∂µ
=

1

ZG

∑

N

NeβµNZN . (6.225)

Because N fluctuates, we need to reinterpret (6.72) as N = −∂Ω/∂µ.

Recall from (4.88) that the fluctuations in the energy are related to the heat capacity. In the
following we show that the fluctuations in the number of particles are related to the isothermal
compressibility κ, which is defined as (see (2.172))

κ = − 1

V

(∂V

∂P

)

T,N
. (6.226)

The first step in the derivation is given in Problem 6.42.

Problem 6.42. Number fluctuations

Use the Gibbs distribution Ps in (6.73) to show that N can be written as

N =

∑

s
Ns e

−β(Es−µNs)

∑

s
e−β(Es−µNs)

(6.227)

Then use (6.227) to show that

(∂N

∂µ

)

T,V
=

1

kT
[N2 −N

2
], (6.228)

or

[N2 −N
2
] = kT

(∂N

∂µ

)

T,V
, (6.229)
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where

N2 =

∑

s
Ns

2 e−β(Es−µNs)

∑

s
e−β(Es−µNs)

. (6.230)

In Problem 6.43 we relate the partial derivatives (∂µ/∂N)T,V to (∂V/∂P )T,N .

Problem 6.43. Another Maxwell relation

Because the Helmholtz free energy F (T, V,N) is extensive, it may be expressed in the form

F (T, V,N) = Nf(T, ρ), (6.231)

where f is the free energy per particle and is a function of the intensive variables T and ρ.

(a) Show that

µ = f + ρ
(∂f

∂ρ

)

T
(6.232)

(∂µ

∂ρ

)

T
= 2

(∂f

∂ρ

)

T
+ ρ

(∂2f

∂ρ2

)

T
, (6.233)

and

P = ρ2
(∂f

∂ρ

)

T
(6.234)

(∂P

∂ρ

)

T
= 2ρ

(∂f

∂ρ

)

T
+ ρ2

(∂2f

∂ρ2

)

T
= ρ

(∂µ

∂ρ

)

T
. (6.235)

Note that (6.235) is an example of a Maxwell relation (see Section 2.22).

(b) Show that

(∂P

∂ρ

)

T
= −V

2

N

(∂P

∂V

)

T,V
(6.236a)

(∂µ

∂ρ

)

T
= V

( ∂µ

∂N

)

T,V
(6.236b)

(c) Use (6.235) and (6.236) to show that

N
( ∂µ

∂N

)

T,V
=

1

ρκ
(6.237)

Hence it follows from (6.228) that

κ =
1

ρkT

(N2 −N
2
)

N
. (6.238)
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Equation (6.238) is another example of the relation of a response function, the compressibility
κ, to the mean-square fluctuations of a thermodynamic variable.

From (6.229) we have that

[

N2 −N
2]

N
=
kT

N

(∂N

∂µ

)

T,V
. (6.239)

Because µ is an intensive quantity, the right-hand side of (6.239) is intensive, that is, independent
of N . Hence the left-hand side of (6.239) must also be independent of N . This independence

implies that the standard deviation is given by ∆N =
[

N2 − N
2]1/2 ∝ N

1/2
, and therefore the

relative fluctuations in the number of particles is

∆N

N
∝ N

−1/2 → 0 as N → ∞. (6.240)

That is, in the thermodynamic limit, N → ∞, V → ∞ with ρ = N/V a constant, we can
identify the thermodynamic variable N with N . As in our discussion of the canonical ensemble in
Section 4.6, we see that the thermodynamic properties calculated in different ensembles become
identical in the thermodynamic limit.

∗Problem 6.44. Number fluctuations in a noninteracting classical gas

(a) Show that the grand partition function of a noninteracting classical gas can be expressed as

ZG =
∞
∑

N=0

(zZ1)
N

N !
= ezZ1 , (6.241)

where the activity z = eβµ.

(b) Show that the mean value of N is given by

N = zZ1, (6.242)

and the probability that there are N particles in the system is given by a Poisson distribution:

PN =
zNZN

ZG
=

(zZ1)
N

N !ZG
=
N

N

N !
e−N . (6.243)

(c) What is the N -dependence of the variance, (N −N)2?

6.11.2 Low temperature expansion of an ideal Fermi gas

We derive the low temperature expansion of the thermodynamic properties of an ideal Fermi gas.
For convenience, we first give the formal expressions for the thermodynamic properties of a ideal
Fermi gas at temperature T . The mean number of particles is given by

N =
21/2V m3/2

π2~3

∫ ∞

0

ǫ1/2 dǫ

eβ(ǫ−µ) + 1
, (6.244)
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and the Landau potential Ω is given by (see (6.109))

Ω = −2

3

21/2Vm3/2

π2~3

∫ ∞

0

ǫ3/2 dǫ

eβ(ǫ−µ) + 1
. (6.245)

The integrals in (6.244) and (6.245) cannot be expressed in terms of familiar functions for
all T . However, in the limit T ≪ TF (as is the case for almost all metals), it is sufficient to
approximate the integrals. To understand the approximations, we express the integrals (6.244)
and (6.245) in the form

I =

∫ ∞

0

f(ǫ) dǫ

eβ(ǫ−µ) + 1
, (6.246)

where f(ǫ) = ǫ1/2 and e3/2, respectively.

The expansion procedure is based on the fact that the Fermi-Dirac distribution function n(ǫ)
differs from its T = 0 form only in a small range of width kT about µ. We let ǫ − µ = kTx and
write I as

I = kT

∫ ∞

−βµ

f(µ+ kTx)

ex + 1
dx (6.247a)

= kT

∫ 0

−βµ

f(µ+ kTx)

ex + 1
dx+ kT

∫ ∞

0

f(µ+ kTx)

ex + 1
dx. (6.247b)

In the first integrand in (6.247b) we let x→ −x so that

I = kT

∫ βµ

0

f(µ− kTx)

e−x + 1
dx+ kT

∫ ∞

0

f(µ+ kTx)

ex + 1
dx. (6.247c)

We next write 1/(e−x + 1) = 1 − 1/(ex + 1) in the first integrand in (6.247c) and obtain

I = kT

∫ βµ

0

f(µ− kTx) dx− kT

∫ βµ

0

f(µ− kTx)

ex + 1
dx+ kT

∫ ∞

0

f(µ+ kTx)

ex + 1
dx. (6.248)

Equation (6.248) is still exact.

Because we are interested in the limit T ≪ TF or βµ ≫ 1, we can replace the upper limit in
the second integral by infinity. Then after making the change of variables, w = µ − kTx, in the
first integrand, we find

I =

∫ µ

0

f(w) dw + kT

∫ ∞

0

f(µ+ kTx) − f(µ− kTx)

ex + 1
dx. (6.249)

The values of x that contribute to the integrand in the second term in (6.249) are order one, and
hence it is reasonable to expand f(µ± kTx) in a power series in kTx and integrate term by term.
The result is

I =

∫ µ

0

f(ǫ) dǫ+ 2(kT )2f ′(µ)

∫ ∞

0

xdx

ex + 1
dx+

1

3
(kT )4f ′′′(µ)

∫ ∞

0

x3dx

ex + 1
dx+ . . . (6.250)
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The definite integrals in (6.250) can be evaluated using analytical methods (see Appendix A). The
results are

∫ ∞

0

xdx

ex + 1
=
π2

12
(6.251)

∫ ∞

0

x3 dx

ex + 1
=

7π4

120
(6.252)

If we substitute (6.251) and (6.252) into (6.250), we obtain the desired result

I =

∫ µ

0

f(ǫ) dǫ+
π2

6
(kT )2f ′(µ) +

7π4

360
(kT )4f ′′′ + . . . (6.253)

Note that although we expanded f(µ−kTx) in a power series in kTx, the expansion of I in (6.253)
is not a power series expansion in (kT )2. Instead (6.253) represents an asymptotic series that is a
good approximation to I if only the first several terms are retained.

To find Ω in the limit of low temperatures, we let f(ǫ) = ǫ3/2 in (6.253). From (6.245) and
(6.253) we find that in the limit of low temperatures

Ω = −2

3

21/2V m3/2

π2~3

[2

5
µ5/2 +

π2

4
(kT )2µ1/2

]

. (6.254)

N = −∂Ω

∂µ
=
V (2m)3/2

3π2~3

[

µ3/2 +
π2

8
(kT )2µ−1/2

]

. (6.255)

A more careful derivation of the low temperature behavior of an ideal Fermi gas has been given
by Weinstock.

Vocabulary

thermal de Broglie wavelength, λ

semiclassical limit

equipartition theorem

Maxwell velocity and speed distributions

occupation numbers, spin and statistics, bosons and fermions

Bose-Einstein distribution, Fermi-Dirac distribution, Maxwell-Boltzmann distribution

single particle density of states, g(ǫ)

Fermi energy ǫF , Fermi temperature TF , and Fermi momentum pF

macroscopic occupation, Bose-Einstein condensation

law of Dulong and Petit, Einstein and Debye theories of a crystalline solid

Additional Problems

Problem 6.45. Explain in simple terms why the mean kinetic energy of a classical particle in
equilibrium with a heat bath at temperature T is 1

2kT per quadratic contribution to the kinetic
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Figure 6.5: A schematic representation of a diatomic molecule.

energy, independent of the mass of the particle.

Problem 6.46. Heat capacity of a linear rigid rotator

So far we have considered the thermal properties of an ideal monatomic gas consisting of spherically
symmetrical, rigid molecules undergoing translational motion, that is, their internal motion was
ignored. Real molecules are neither spherical nor rigid, and rotate about two or three axes and
vibrate with many different frequencies. For simplicity, consider a linear rigid rotator consisting
of two point masses m1 and m2 located a fixed distance r from each other. We will first assume
that r is fixed and ignore vibrational motion, which is discussed in Problem 6.47. The rotational
energy levels are given by

ǫ(j) = j(j + 1)
~

2

2I
, (6.256)

where I is the moment of inertia and j = 0, 1, 2, . . . is the angular momentum quantum number.
The degeneracy of each rotational energy level is (2j + 1).

(a) Express the partition function Zrot for one molecule as a sum over energy levels.

(b) The sum that you found in part (a) cannot be evaluated exactly in terms of well known
functions. However, for T ≫ Trot = ~

2/(2kI), the energy spectrum of the rotational states
may be approximated by a continuum and the sum over j can be replaced by an integral.
Show that the rotational heat capacity (at constant volume) of an ideal gas of linear rigid
rotators is given by Crot = Nk in the high temperature limit T ≫ Trot. Compare this limiting
behavior with the prediction of the equipartition theorem. In this case we say that the linear
rigid rotator has two quadratic contributions to the energy. Explain.

(c) The magnitude of Trot for a typical diatomic molecule such as HCl is Tr ≈ 15K. Sketch the
temperature dependence of Crot, including its behavior for T ≪ Trot and T ≫ Trot.
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Problem 6.47. Heat capacity of an ideal diatomic gas

In addition to translational and rotational motion, a diatomic molecule can exhibit vibrational
motion (see Figure 6.5). It is a good approximation to take the rotational and vibrational motion to
be independent and to express the total energy of an ideal diatomic gas as a sum of the translational,
rotational, and vibrational contributions. Hence the total heat capacity (at constant volume) of
the gas can be written as

C = Ctran + Crot + Cvib. (6.257)

The last two terms in (6.257) arise from the internal motion of the molecule. The rotational
contribution Crot was discussed in Problem 6.46.

(a) The vibrational motion of a diatomic molecule can be modeled by harmonic oscillations about
the minimum of the potential energy of interaction between the two molecules. What is the
high temperature limit of Cvib?

(b) Let us define a temperature Tvib = ~ω/k. The magnitude of Tvib for HCl is Tvib ≈ 4227K,
where ω is the vibrational frequency and ~ω is the energy difference between neighboring
vibrational energy levels. What do you expect the value of Cvib to be at room temperature?

(c) Use the value of Trot given in Problem 6.46 and the value of Tvib given in part (b) for HCl to
sketch the T -dependence of the total heat capacity C in the range 10 K ≤ T ≤ 10000K.

Problem 6.48. Law of atmospheres

Consider an ideal classical gas in equilibrium at temperature T in the presence of an uniform
gravitational field. Find the probability P (z)dz that an atom is at a height between z and z + dz
above the earth’s surface. How do the density and the pressure depend on z?

Problem 6.49. Alternative derivation of the Maxwell velocity distribution

The Maxwell velocity distribution can also be derived by making some plausible assumptions. We
first assume that the probability density f(v) for one particle is a function only of its speed |v|
or equivalently v2. We also assume that the velocity distributions of the components vx, vy, vz are
independent of each other.

(a) Given these assumptions, explain why we can write

f(v2
x + v2

y + v2
z) = Cf(v2

x)f(v2
y)f(v2

z), (6.258)

where C is a constant independent of vx, vy, and vz .

(b) Show that a mathematical function that satisfies the condition (6.258) is the exponential
function

f(v2) = c e−αv2

, (6.259)

where c and α are independent of v.

(c) Determine c in terms of α using the normalization condition 1 =
∫ ∞

−∞ f(u)du for each compo-
nent. Why must α be positive?

(d) Use the fact that 1
2kT = 1

2mv
2
x to find the result Maxwell velocity distribution in (6.59).
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(e) *Show that f(v2) in part (b) is the only function that satisfies the condition (6.258).

Problem 6.50. Consequences of the Maxwell velocity distribution

(a) What is the probability that the kinetic energy of a classical nonrelativistic particle is in the
range ǫ to ǫ+ dǫ? What is the most probable kinetic energy? Is it equal to 1

2mṽ
2, where ṽ is

the most probable speed?

(b) Find the values of vx, v2
x, v

2
xv

2
y, and vxv2

y for a classical system of particles at temperature T .
No calculations are necessary.

Problem 6.51. Mean energy of a nonlinear oscillator

Consider a classical one-dimensional nonlinear oscillator whose energy is given by

ǫ =
p2

2m
+ ax4, (6.260)

where x, p, and m have their usual meanings; the parameter a is a constant.

(a) If the oscillator is in equilibrium with a heat bath at temperature T , calculate its mean kinetic
energy, mean potential energy, and the mean total energy. (It is not necessary to evaluate any
integrals explicitly.)

(b) Consider a classical one-dimensional oscillator whose energy is given by

ǫ =
p2

2m
+

1

2
kx2 + ax4. (6.261)

In this case the anharmonic contribution ax4 is very small. What is the leading contribution
of this term to the mean potential energy? (Recall that for small u, eu ≈ 1 + u.)

Problem 6.52. Granular systems

A system of glass beads or steel balls is an example of a granular system. In such a system the beads
are macroscopic objects and the collisions between the beads are inelastic. Because the collisions
in such a system are inelastic, a gas-like steady state is achieved only by inputting energy, usually
by shaking or vibrating the walls of the container. Suppose that the velocities of the particles are
measured in a direction perpendicular to the direction of shaking. Do the assumptions we used to
derive the Maxwell-Boltzmann velocity distribution apply here? See for example, the experiments
by Daniel L. Blair and Arshad Kudrolli, “Velocity correlations in dense granular gases,” Phys. Rev.
E 64, 050301(R) (2001) and the theoretical arguments by J. S. van Zon and F. C. MacKintosh,
“Velocity distributions in dissipative granular gases,” Phys. Rev. Lett. 93, 038001 (2004).

Problem 6.53. A toy system of two particles

Consider a system consisting of two noninteracting particles in equilibrium with a heat bath at
temperature T . Each particle can be in one of three states with energies 0, ǫ1, and ǫ2. Find the
partition function for the cases described in parts (a)–(c) and then answer parts (d)–(f):
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(a) The particles obey Maxwell-Boltzmann statistics and can be considered distinguishable.

(b) The particles obey Fermi-Dirac statistics.

(c) The particles obey Bose-Einstein statistics.

(d) Find the probability in each case that the ground state is occupied by one particle.

(e) What is the probability that the ground state is occupied by two particles?

(f) Estimate the probabilities in (d) and (e) for kT = ǫ2 = 2ǫ1.

∗Problem 6.54. Consider a single particle of mass m in a one-dimensional harmonic oscillator
potential given by V (x) = 1

2kx
2. As we found in Example 4.3, the partition function is given by

Z1 = e−x/2/(1 − e−x), where x = β~ω.

(a) What is the partition function for two noninteracting distinguishable particles in the same
potential?

(b) What is the partition function for two noninteracting fermions in the same potential assuming
the fermions have no spin?

(c) What is the partition function for two noninteracting bosons in the same potential? Assume
the bosons have spin zero.

(d) Calculate the mean energy and entropy in the three cases considered in parts (a)–(c). Plot E
and S as a function of T and compare the behavior of E and S in the limiting cases of T → 0
and T → ∞.

Problem 6.55. Neutron stars

A neutron star can be considered to be a collection of non-interacting neutrons, which are spin 1/2
fermions. A typical neutron star has a mass M close to one solar mass M⊙ ≈ 2 × 1030 kg. The
mass of a neutron is about m = 1.67× 10−27 kg. In the following we will estimate the radius R of
the neutron star.

(a) Find the energy of a neutron star at T = 0 as a function of R, M , and m assuming that the
star can be treated as an ideal non-relativistic Fermi gas.

(b) Assume that the density of the star is uniform and show that its gravitational energy is given
by EG = −3GM2/5R, where the gravitational constant G = 6.67 × 10−11 Nm2/kg2. (Hint:
from classical mechanics find the gravitational potential energy between an existing sphere of
radius r and a shell of volume 4πr2dr coming from infinity to radius r. Then integrate from
r = 0 to R.)

(c) Assume that gravitational equilibrium occurs when the total energy is minimized and find an
expression for the radius R.
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(d) Estimate the actual value of R in kilometers. Estimate the mass density and compare it with
the density of material on the surface of the earth such as water.

(e) Determine the Fermi energy and Fermi temperature. A typical internal temperature for a
neutron star is T = 108 K. Compare this value with the Fermi temperature and determine if
the zero temperature approximation that we have used is applicable.

(f) Compare the rest energy mc2 of a neutron with the Fermi energy of a neutron star. Is the
non-relativistic approximation valid?

Problem 6.56. White dwarfs

A white dwarf is a very dense star and can be considered to be a degenerate gas of electrons and an
equal number of protons to make it charge neutral. We will also assume that there is one neutron
per electron and that the mass of the star is about the same as our Sun. Many of the results of
Problem 6.55 can be used here with slight modifications.

(a) Find the mean energy at T = 0 as a function of R, M , and me, where M is the total mass of
the star and me is the electron mass.

(b) Assume that the star has a uniform density and show that the gravitational energy of the star
is given by EG = −3GM2/5R.

(c) Assume that gravitational equilibrium occurs when the total energy is minimized and find an
expression for the radius R.

(d) Estimate the actual value of R in kilometers. Estimate the mass density and compare it with
the density of water on the surface of Earth.

(e) For extremely relativistic electrons the relation between the energy ǫ and momentum p of
an electron is given by ǫ = cp, where c is the speed of light. Find the Fermi energy and
temperature.

(f) Find the mean energy at T = 0 for relativistic electrons in a white dwarf. Add this energy to
the gravitational energy. Is there a minimum at a finite value of R? If not, what does this
result mean about stability?

(g) Compare the rest energy mec
2 with the non-relativistic Fermi energy. Is the non-relativistic

approximation valid? When the rest energy equals the non-relativistic Fermi energy, we know
that the non-relativistic approximation is not valid. At what value of the total mass does this
equality occur? Chandrasekhar obtained a limiting mass of 1.4M⊙ by taking into account the
more accurate relation ǫ = (m2

ec
4 + c2p2)1/2 and the variation of density within the star. How

does your crude estimate compare?

Problem 6.57. Toy systems of fermions

(a) Consider a system of noninteracting (spinless) fermions such that each particle can be a single
particle state with energy 0, ∆, and 2∆. Find an expression for ZG using (6.224). Determine
how the mean number of particles depends on µ for T = 0, kT = ∆/2, and kT = ∆.
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(b) *A system contains N identical noninteracting fermions with 2N distinct single particle states.
Suppose that 2N/3 of these states have energy zero, 2N/3 have energy ∆, and 2N/3 have energy
2∆. Show that µ is independent of T . Calculate and sketch the T -dependence of the energy
and heat capacity.

∗Problem 6.58. Periodic boundary conditions

Assume periodic boundary conditions so that the wave function ψ satisfies the condition (in one
dimension)

ψ(x) = ψ(x+ L). (6.262)

The form of the one particle eigenfunction consistent with (6.262) is given by

ψ(x) ∝ eikxx. (6.263)

What are the allowed values of kx? How do they compare with the allowed values of kx for a particle
in a one-dimensional box? Generalize the form (6.263) to a cube and determine the allowed values
of k. Find the form of the density of states and show that the same result (6.96) is obtained.

Problem 6.59. Chemical potential of a one-dimensional ideal Fermi gas

Calculate the chemical potential µ(T ) of an one-dimensional ideal Fermi gas at low temperatures
T ≪ TF . Use the result for µ(T ) found for the two-dimensional case in Problem 6.33 and compare
the qualitative behavior of µ(T ) in one, two, and three dimensions.

Problem 6.60. High temperature limit of the ideal Fermi gas

If T ≫ TF at fixed density, quantum effects can be neglected and the thermal properties of an
ideal Fermi gas reduce to the ideal classical gas. In the following we will find the first correction
to the classical pressure equation of state.

(a) Does the pressure increase or decrease when the temperature is lowered (at constant density)?
That is, what is the sign of the first quantum correction to the classical pressure equation of
state? The pressure is given by (see (6.109))

P =
(2m)3/2

3π2~3

∫ ∞

0

ǫ3/2 dǫ

eβ(x−µ) + 1
. (6.264)

In the high temperature limit, eβµ ≪ 1, we can make the expansion

1

eβ(ǫ−µ) + 1
= eβ(µ−ǫ) 1

1 + e−β(ǫ−µ)
(6.265a)

≈ eβ(µ−ǫ)[1 − e−β(ǫ−µ)]. (6.265b)

If we use (6.265b), we obtain

eβµ

∫ ∞

0

x3/2e−x(1 − eβµe−x) dx =
3

4
π1/2eβµ

[

1 − 1

25/2
eβµ

]

. (6.266)

Use (6.266) to show that P is given by

P =
m3/2(kT )5/2

21/2 π3/2~3
eβµ

[

1 − 1

25/2
eβµ

]

. (6.267)
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(b) Derive an expression for N similar to (6.267). Eliminate µ and show that the leading order
correction to the equation of state is given by

PV = NkT
[

1 +
π3/2

4

ρ~3

(mkT )3/2

]

, (6.268a)

= NkT
[

1 +
1

27/2
ρλ3

]

. (6.268b)

(c) What is the condition for the correction term in (6.268b) to be small? Note that as the
temperature is lowered at constant density, the pressure increases. What do you think would
be the effect of Bose statistics in this context (see Problem 6.61)? Mullin and Blaylock have
emphasized that it is misleading to interpret the sign of the correction term in (6.268b) in terms
of an effective repulsive exchange “force,” and stress that the positive sign is a consequence of
the symmetrization requirement for same spin fermions.

Problem 6.61. High temperature limit of ideal Bose gas

If T ≫ Tc at fixed density, quantum effects can be neglected and the thermal properties of an
ideal Bose gas reduces to the ideal classical gas. Does the pressure increase or decrease when the
temperature is lowered (at constant density)? That is, what is the first quantum correction to the
classical equation of state? The pressure is given by (see (6.109))

P =
21/2m3/2(kT )5/2

3π2~3

∫ ∞

0

x3/2 dx

ex−βµ − 1
. (6.269)

Follow the same procedure as in Problem 6.60 and show that

PV = NkT
[

1 − π3/2

2

ρ~3

(mkT )3/2

]

. (6.270)

We see that as the temperature is lowered at constant density, the pressure becomes less than its
classical value.

Problem 6.62. Bose condensation in one and two dimensions?

Does Bose condensation occur for a one and two-dimensional ideal Bose gas? If so, find the
transition temperature. If not, explain.

∗Problem 6.63. Graphene

Graphene is a two-dimensional sheet of carbon, which was first made in the laboratory in 2004
with the help of everyday clear adhesive (Scotch) tape. Graphite, the material used in pencils,
consists of many layers of graphene. The gentle stickiness of the tape was used to break apart the
many layers of graphite. Among graphene’s many interesting properties is that its low temperature
behavior can be understood by treating it as a collection of noninteracting excitations which behave
as relativistic Dirac fermions and obey the dispersion relation

ǫ±(k) = ±hvk. (6.271)

The spin degeneracy is g = 2 and v ≈ 106 m/s.
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(a) Find the chemical potential at T = 0, assuming that all negative energy states are occupied
and all positive energy states are empty.

(b) Show that the mean energy is given by

E(T ) − E(0) = 4A

∫

ǫ+(k)

eβǫ+(k) + 1
d2k, (6.272)

where A is the area of the system.

(c) Calculate the temperature dependence of the heat capacity at low temperatures due to these
massless Dirac particles.

(d) Besides the contribution to the heat capacity calculated in part (c), there is the usual contri-
bution of the lattice vibrations (phonons) to the heat capacity. Given that the sound speed in
graphite is ≈ 2 × 104 m/s, determine whether the low temperature heat capacity is controlled
by phonon or electron contributions.

Problem 6.64. Discuss why Bose condensation does not occur in a system of photons correspond-
ing to blackbody radiation.

Problem 6.65. More on the Debye model

(a) Show that if the volume of the crystal is Na3, where a is the equilibrium distance between
atoms, then the Debye wave number, kD = ωD/c, is about π/a.

(b) Evaluate the integral in (6.202) numerically and plot the heat capacity versus T/TD over the
entire temperature range.

∗Problem 6.66. Bose-Einstein condensation in low-dimensional traps

As you found in Problem 6.62, Bose-Einstein condensation does not occur in ideal one and two-
dimensional systems. However, this result holds only if the system is confined by rigid walls. In
the following, we will show that Bose-Einstein condensation can occur if a system is confined by a
spatially varying potential. For simplicity, we will treat the system semiclassically

Let us assume that the confining potential has the form

V (r) ∼ rn. (6.273)

In this case the region accessible to a particle with energy ǫ has a radius ℓ ∼ ǫ1/n. Show that the
corresponding density of states behaves as

g(ǫ) ∼ ℓdǫ
1
2
d−1 ∼ ǫd/nǫ

1
2
d−1 ∼ ǫα, (6.274)

where

α =
d

n
+
d

2
− 1 (6.275)

What is the range of values of n for which Tc > 0 for d = 1 and 2? More information about
experiments on Bose-Einstein condensation can be found in the references.
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∗Problem 6.67. Number fluctuations in a degenerate ideal Fermi gas

Use the relation (6.228)

(N −N)2 = kT
∂N

∂µ
(6.276)

to find the number fluctuations in the ideal Fermi gas for fixed T, V , and µ. Show that

(N −N)2 =
kT

2

V (2m)3/2

2π2~3

∫ ∞

0

ǫ−1/2 dǫ

eβ(ǫ−µ) + 1
, (6.277a)

−→ 3NT

2TF
(T ≪ TF ). (6.277b)

Explain why the fluctuations in a degenerate Fermi system are much less than in the corresponding
classical system.

Suggestions for further reading

More information about Bose-Einstein condensation can be found at <jilawww.colorado.edu/bec/>,
<bec.nist.gov/>, and <www.rle.mit.edu/cua_pub/ketterle_group/>.

Vanderlei Bagnato and Daniel Kleppner, “Bose-Einstein condensation in low-dimensional traps,”
Phys. Rev. A 44, 7439–7441 (1991).

Ralph Baierlein, “The elusive chemical potential,” Am. J. Phys. 69, 428–434 (2001).

Roger Balian and Jean-Paul Blaizot, “Stars and statistical physics: A teaching experience,” Am.
J. Phys. 67, 1189–1206 (1999). The article, which is part of a theme issue on thermal and
statistical mechanics, contains an excellent introduction to the use of statistical physics in
studying stars.

See John J. Brehm and William J. Mullin, Introduction to the Structure of Matter, John Wiley &
Sons (1989) or Robert Eisberg and Robert Resnick, Quantum Physics of Atoms, Molecules,

Solids, Nuclei, and Particles, second edition, John Wiley & Sons (1985) for a more complete
discussion of blackbody radiation.

Ian Duck and E. C. G. Sudarshan, Pauli and the Spin-Statistics Theorem, World Scientific (1998).
This graduate level text simplifies and clarifies the formal statements of the spin-statistics
theorem, and corrects the flawed intuitive explanations that are frequently given.

David L. Goodstein, States of Matter, Prentice Hall (1975). An excellent text whose emphasis is
on the applications of statistical mechanics to gases, liquids and solids. Chapter 3 on solids
is particularly relevant to this chapter.

J. D. Gunton and M. J. Buckingham, “Condensation of ideal Bose gas as cooperative transition,”
Phys. Rev. 166, 152–158 (1968).

F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73, 717–721
(2005). The authors discuss thermodynamic states and processes involving light in which the
chemical potential of light is nonzero.

<jilawww.colorado.edu/bec/>
http://jilawww.colorado.edu/bec/
<bec.nist.gov/>
http://bec.nist.gov/
<www.rle.mit.edu/cua_pub/ketterle_group/>
http://www.rle.mit.edu/cua_pub/ketterle_group/
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Charles Kittel, Introduction to Solid State Physics, seventh edition, John Wiley & Sons (1996).
See Chapters 5 and 6 for a discussion of the Debye model and the free electron gas.

W. J. Mullin and G. Blaylock, “Quantum statistics: Is there an effective fermion repulsion or
boson attraction?,” Am. J. Phys. 71, 1223–1231 (2003).

A. Pais, “Einstein and the quantum theory,” Rev. Mod. Phys. 51, 863–914 (1979). This review
article has a fascinating account of how Planck arrived at his famous blackbody radiation
formula.

Donald Rogers, Einstein’s Other Theory: The Planck-Bose-Einstein Theory of Heat Capacity,
Princeton University Press (2005).

Robert H. Swendsen, “Statistical mechanics of colloids and Boltzmann’s definition of the entropy,”
Am. J. Phys. 74, 187–190 (2006). The author argues that the usual definition of the entropy
for a classical system of particles in terms of the logarithm of a volume in phase space is
not fundamental and not the definition orginally given by Boltzmann. Swendsen’s treatment
resolves the Gibbs’ paradox in a novel way.

Robert Weinstock, “Heat capacity of an ideal free electron gas: A rigorous derivation,” Am. J.
Phys. 37, 1273–1279 (1969).
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