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We develop the basic methodology of statistical mechanics and provide a microscopic foundation
for the concepts of temperature and entropy.

4.1 Introduction

We now will apply the tools and concepts of thermodynamics and probability which we introduced
in Chapters 2 and 3 to relate the microscopic and macroscopic descriptions of thermal systems. In
so doing we will develop the formalism of statistical mechanics. To make explicit the probabilistic
assumptions and the type of calculations that are done in statistical mechanics we first discuss an
isolated system of non-interacting spins. The main ideas that we will need from Chapter 3 are
the rules of probability, the calculation of averages, and the principle of least bias or maximum
uncertainty.

Consider an isolated system of N = 5 noninteracting spins or magnetic dipoles with magnetic
moment p and spin 1/2 in a magnetic field B. Each spin can be parallel or antiparallel to the
magnetic field. The energy of a spin parallel to the magnetic field is € = —uB, and the energy of a
spin aligned opposite to the field is ¢ = +uB. We will consider a specific case for which the total
energy of the system is £ = —uB. What is the mean magnetic moment of a given spin in this
system? The essential steps needed to answer this question can be summarized as follows.

1. Specify the macrostate and accessible microstates of the system. The macroscopic state or
macrostate of the system corresponds to the information that we know. In this example we know
the total energy E and the number of spins N.

The most complete specification of the system corresponds to the enumeration of the mi-
crostates or configurations of the system. For N = 5 there are 2° = 32 microstates specified by the
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Figure 4.1: (a) Example of an inaccessible microstate corresponding to the macrostate specified
by E = —uB and N =5. (b) The ten accessible microstates. Spin #1 is the left most spin.

orientation of each of the N spins. Not all of the 32 microstates are consistent with the information
that F = —uB. For example, the microstate shown in Figure 4.1(a) is not allowed, that is, such
a microstate is inaccessible, because its energy is £ = —5uB. The accessible microstates of the
system are those that are compatible with the macroscopic conditions. In this example ten of the
thirty-two total microstates are accessible (see Figure 4.1(b)).

2. Choose the ensemble. We calculate averages by preparing a collection of identical systems all
of which satisfy the macroscopic conditions £ = —uB and N = 5. In this example the ensemble
consists of ten systems each of which is in one of the ten accessible microstates.

What can we say about the relative probability of finding the system in one of the ten accessible
microstates? Because the system is isolated and each microstate is consistent with the specified
macroscopic information, we assume that each microstate in the ensemble is equally likely. This
assumption of equal a priori probabilities implies that the probability P that the system is in
microstate s is given by

P, = (4.1)

Q 3
where 2 represents the number of microstates of energy F. This assumption is equivalent to the
principle of least bias or maximum uncertainty that we discussed in Section 3.4.1. For our example
we have 2 = 10, and the probability that the system is in any one of its accessible microstates
is 1/10. The macroscopic constraints, the microstates consistent with these constraints, and the
relative probabilities of the microstates specify the ensemble. Here the constraints are the values
of F and N and the ten accessible microstates are given in Figure 4.1(b) with the probabilities in
(4.1).

3. Calculate the mean values and other statistical properties. In this simple example we will
calculate the mean value of the orientation of spin #1 (see Figure 4.1(b)). Because s; assumes the
value +1, we have

10
S51= Zpisl,i (4.2a)
i=1

(4.2b)
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The sum is over all the accessible microstates and s ; is the value of spin #1 in the ¢th member of
the ensemble. We see from (4.2b) that the mean value of s; is 31 = 1/5. The corresponding mean
magnetic moment of spin #1 is us; = /5.

Problem 4.1. Simple example

(a) What is the mean value of spin #2 in the above example? Why is its mean value not zero?
(b) What is the probability p that a given spin points up?

(c) What is the probability that if spin #1 is up, then spin #2 also is up? O

There is a more direct way of calculating 5; in this case. Because the magnetization of the
system is M = pu, three out of the five spins are up. The equivalency of the spins implies that the
probability of a spin being up is 3/5. Hence, s = (1)(3/5) + (—1)(2/5) = 1/5. What is the implicit
assumption that we made in the more direct method?

Problem 4.2. Counting microstates

(a) Consider N = 4 noninteracting spins with magnetic moment p that can point either parallel
or antiparallel to the magnetic field B. If the total energy E = —2uB, what are the accessible
microstates and the probability that a particular spin is up or down?

(b) Cousider N = 9 noninteracting spins with total energy F = —uB. What is the number of up
spins, the number of accessible microstates, and the probability that a particular spin is up or
down? O

Problem 4.3. Probability of particles moving in same direction

Consider a one-dimensional ideal gas consisting of N = 5 particles each of which has the same
speed v, but can move in one of two directions with equal probability. The velocity of each particle
is independent. What is the probability that all the particles are moving in the same direction? [

The example that we have just considered is an example of an isolated system. In this case the
system of spins has fixed values of E, B, and N. An isolated system cannot exchange energy or
matter with its surroundings nor do work on another system. The macrostate of an isolated system
of particles is specified by E, V, and N (B instead of V for a magnetic system). Isolated systems
are conceptually simple because all the accessible microstates have the same probability. We will
learn that isolated systems are described by the microcanonical ensemble. (see Section 4.5).

4.2 A Simple Example of a Thermal Interaction

Now that we have an idea of how we can do probability calculations for an isolated system, we
next consider some simple systems that can exchange energy with another system. We will see
that for nonisolated systems, the probability of each microstate is not the same.

We know what happens when we place two bodies at different temperatures into thermal
contact with one another — energy is transferred from the hotter to the colder body until thermal
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microstate | red | white | blue
1 1 1 1
2 2 0 1
3 2 1 0
4 1 0 2
5 1 2 0
6 0 1 2
7 0 2 1
8 3 0 0
9 0 3 0
10 0 0 3

Table 4.1: The ten accessible microstates of a system of N = 3 distinguishable particles with total
energy F' = 3. Each particle may have energy 0, 1, 2, ...

equilibrium is reached and the two bodies have the same temperature. We now consider a simple
model that illustrates how statistical concepts can help us understand the transfer of energy and
the microscopic nature of thermal equilibrium.

Consider a system of N noninteracting distinguishable particles such that the energy of each
particle is restricted to integer values, that is, €, =0, 1, 2, 3, ... We can distinguish the particles
by their colors, or we can assume that the particles have the same color, but are fixed on lattice
sites. For reasons that we will discuss in Section 6.9, we will refer to this model system as an
Einstein solid.!

Consider an Einstein solid with N = 3 particles (with colors red, white, and blue) in an
isolated box and total energy E = 3. For these small values of N and E, we can enumerate
the accessible microstates by hand. The ten accessible microstates of this system are shown in
Table 4.1. Because the energy is specified, the ten accessible microstates are equally probable.

Problem 4.4. Simple Einstein solid
Consider an Einstein solid composed of N particles with total energy E. The general expression
for the number of microstates of this system is

(E4+ N —1)!

2= EV(N - 1)

(4.3)

(a) Verify that (4.3) yields the correct answers for N = 3 and E = 3.
(b) What is the number of microstates for an Einstein solid with N =4 and E = 67

(¢) Suppose that N = 3 and E = 3 and the particles are labeled red, white, and blue. What is
the probability that the red particle has energy equal to one?

(d) Given that the red particle has energy 1, what is the probability that the blue particle has
energy 27 O

IThese particles are equivalent to the quanta of the harmonic oscillator, which have energy E, = (n + %)hw,

where h = h/2m, and h is Planck’s constant. If we measure the energies from the lowest energy state, %hw, and
choose units such that Aw = 1, we have €, = n.
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Figure 4.2: An isolated composite system consisting of two subsystems, each with two distinguish-
able particles. In (a) the wall between the two subsystems is insulating, rigid, and impermeable.
In (b) the wall is is conducting, rigid, and impermeable. The total energy of the composite system
is six.

Now that we know how to enumerate the number of microstates of an Einstein solid, consider
an isolated system of N = 4 particles that is divided into two subsystems. A system consisting
of two or more subsystems is called a composite system. In this case the latter is surrounded by
insulating, rigid, impermeable outer walls so that its energy, volume, and number of particles is
fixed. It also is initially separated by a similar partition (see Figure 4.2) so that there can be no
change in the energy, number of particles, and the volume of each subsystem. Subsystem A consists
of two particles, R (red) and G (green), with E4 = 5; subsystem B consists of two particles, B
(black) and W (white), with energy Ep = 1. The total energy FEio of the isolated composite
system consisting of subsystem A plus subsystem B is

Etot:EA+EB:5+1:6- (44)

The accessible microstates for the isolated composite system are shown in Table 4.2. We see
that subsystem A has 24 = 6 accessible microstates and subsystem B has Qg = 2 accessible
microstates. The total number of microstates (2,4 accessible to the composite system is

Quot = Qa4 x Qg =6 x2=12. (4.5)

The partition is an internal constraint that prevents the transfer of energy from one subsystem to
another and in this case keeps F4 = 5 and Ep = 1. (The internal constraint also keeps the volume
and number of particles in each subsystem fixed.)

We now consider a simple example of a thermal interaction. Suppose that the insulating,
rigid, impermeable partition separating subsystems A and B is changed to a conducting, rigid,
impermeable partition (see Figure 4.2). The rigid partition maintains the volumes V4 and Vp,
and hence the single particle energies are not changed. Because the partition is impermeable, the
particles cannot penetrate the partition and go from one subsystem to the other. However, energy
can be transferred from one subsystem to the other, subject only to the constraint that the total
energy of subsystems A and B is constant, that is, Fiot = F4 + EFp = 6. The microstates of
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E 4 | accessible microstates of A || Ep | accessible microstates of subsystem B
5,0 0,5 1,0 0,1

5 4,1 1.4 1
3,2 2,3

Table 4.2: The 12 equally probable microstates of the isolated composite system composed of
subsystems A and B with Nga =2, B4 =5, Ng = 2, and Eg = 1. The 12 microstates consist of
all combinations of the microstates of A and B.

subsystems A and B are listed in Table 4.3 for all the possible values of E4 and Fp. The total
number of microstates Qiot(Ea, E5) accessible to the isolated composite system whose subsystems
have energy F4 and Ep is

Qtot(EAuEB) :QA(EA)QB(EB) (46)

For example. if £y =4 and Ep = 2, then subsystem A can be in any one of five microstates and
subsystem B can be in any of three microstates. These two sets of microstates of subsystems A
and B can be combined to give 5 x 3 = 15 microstates of the composite system.

The total number of microstates o accessible to the composite system can be found by
summing Q4 (FA)Qp(EpR) over the possible values of E4 and Ep consistent with the condition
that E4 + Ep = 6. Hence, ot can be expressed as

ot = Y Qa(Ea)Q5(Erot — Ea). (4.7)
Eq

From Table 4.3 we see that

Qot = (Tx 1)+ (6x2)+(B5x3)+(4x4)+(B3%x5)+(2x6)+ (1 x7)=284. (4.8)

Because the composite system is isolated, its accessible microstates are equally probable, that
is, the composite system is equally likely to be in any one of its 84 accessible microstates. Inspection
of Table 4.3 shows that the probability that the energy of the composite system is divided such
that F4 = 2 and Ep = 4 is 15/84. Let Pa(F4) be the probability that subsystem A has energy
E 4. We see that P4(F4) is given by

Qa(E4)Qp(Eror — Ea)

Pa(Ea) = e : (4.9)

We show in Table 4.4 and the last column of Figure 4.3 the various values of Py (E4).

The mean energy of subsystem A is found by calculating the ensemble average over the 84
microstates accessible to the composite system. We use the results for P4(F4) in Table 4.4 and
find that

FA:(0><8—74)+(1><;—i)+(2><£)+(3X£)+(4X;—i)+(5xé—i)+(6xé):3- (4.10)

Problem 4.5. Standard deviation of the energy of subsystem A
Use the results of Table 4.4 to find the standard deviation of the energy of subsystem A. O



CHAPTER 4. STATISTICAL MECHANICS 179

E, | microstates | Qa(Fa) || Ep | microstates | Qp(Ep) | QaQp | Pa(Ea)
6 160 00 7 0 100 1 T | 7/84
51 15
42 24
3.3
50 05 6 10 01 |2 12 | 12/34
5 |41 14 1
32 23
10 04 5 50 02 |3 15 | 15/34
4 131 13 2 |11
2.9
3 130 03 1 3 (30 03 |4 16 | 16/84
21 1.2 21 1,2
2 120 02 3 1 |40 04 |5 15 | 15/84
1,1 31 13
2.2
1T 1.0 01 2 5 50 05 |6 12 | 12/84
41 14
32 23
0 100 1 6 |60 06 |7 7 7/34
51 15
12 24
3,3

Table 4.3: The 84 equally probable microstates accessible to the isolated composite system com-
posed of subsystems A and B after the removal of the internal constraint. The total energy is
FEiot = EFao+ Eg = 6 with Ny = 2 and Ng = 2. Also shown are the number of accessible
microstates in each subsystem and the probability P4(E4) that subsystem A has energy E4.

Note that the total number of microstates accessible to the isolated composite system increases
from 12 to 84 when the internal constraint is removed. From the microscopic point of view, it is
clear that the total number of microstates must either remain the same or increase when an
internal constraint is removed. Because the number of microstates becomes a very large number
for macroscopic systems, it is convenient to work with the logarithm of the number of microstates.
We are thus led to define the quantity S by the relation

S=knQ, (4.11)

where k is an arbitrary constant. Note the similarity of the definition (4.11) to the expression for
the missing information (3.35). We will later identify the quantity S that we have introduced in
(4.11) with the thermodynamic entropy we discussed in Chapter 2.

Although our simple model has only four particles, we can ask questions that are relevant to
much larger systems. For example, what is the probability that energy is transferred from one
subsystem to the other? Given that F4 =5 and Ep = 1 initially, we see from Table 4.4 that the
probability of subsystem A gaining energy when the internal constraint is removed is 7/84. The
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FEa QA(EA) 93(6—EA) QAQB PA(EA)
6 7 1 7 7/84
5 6 2 12 12/84
1 5 3 15 15/84
3 1 1 16 16/84
2 3 5 15 15/84
1 2 6 12 12/84
0 1 7 7 7/84

Table 4.4: The probability Pa(F4) that subsystem A has energy F4 given that Ny = Np = 2
and Etot = EA + EB = 6.

probability that its energy remains unchanged is 12/84. In the remaining 65/84 cases, subsystem
A loses energy and subsystem B gains energy. Because we know that energy spontaneously flows
from a hotter body to a colder body, we can identify subsystem A as initially the hotter body and
subsystem B as the cooler body. We will find that as the number of particles in the two subsystems
becomes larger (and the energy per particle remains fixed), the probability that energy goes from
the hotter to the colder subsystem rapidly increases.

Problem 4.6. Two Einstein solids in thermal contact

Consider two Einstein solids with N4 = 4 and F4 = 10 and Ng = 4 and Eg = 2. The two sub-
systems are thermally isolated from one another. Verify that the number of microstates accessible
to subsystem A is 286 and the number of microstates accessible to subsystem B is 10. What is the
initial number of accessible microstates for the composite system? The program EinsteinSolids
determines the number of accessible microstates of an Einstein solid using (4.3) and will help you
answer the following questions.

(a) The internal constraint is removed so that the two subsystems may exchange energy. Determine
the probability P4(E ) that system A has energy E4. Plot Py versus E4 and discuss its
qualitative energy dependence.

(b) What is the probability that energy is transferred from system A to system B and from system
B to system A7 What is the probability that energy goes from the hotter to the colder system?
How does this probability compare to the probability found from Table 4.3 for a smaller system?
Which system was hotter initially?

(c) What is the number of accessible microstates for the composite system after the internal
constraint has been relaxed? What is the change in the total entropy of the system (choose
units such that k = 1)7

(d) Determine the mean energy F4, the most probable energy E4, the standard deviations o4
and op, and the relative fluctuations o4 /E 4. How does the value of this ratio compare with
the value of the ratio calculated in Table 4.37

(e) The entropy of the composite system when each subsystem is in its most probable macrostate
isInQA(FA)Q25(Fiot — Ea). Compare the value of this contribution to the value of the total
entropy, ZEA InQA(EA)Q5(Fiot — Ea), calculated in part (c)?
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(f) *Consider successively larger systems and describe the qualitative behavior of the various
quantities. O

From the examples and problems we have considered we conclude that it is plausible to identify
thermal equilibrium with the most probable macrostate and the entropy with the logarithm of the
number of accessible microstates, We also found that the probability P(E) that a system has energy
E is approximately a Gaussian if it can exchange energy with another system. What quantity can
we identify with the temperature?

Let’s return to the exchange of energy between two simple subsystems and consider the energy
dependence of the entropy of each subsystem. Consider an isolated composite system consisting
of two subsystems with N4 = 3, Np = 4, and total energy Fi,t = 10. The number of microstates
for the two subsystems for the various possible values of F4 are summarized in Table 4.5. The
most probable macrostate corresponds to E4 = 4 and Eg = 6. Because of our association of the
most probable macrostate with thermal equilibrium, we know that the quantity that is the same
for the two subsystems is the temperature. From our considerations in Section 2.13 we tentatively
identify the inverse temperature with the derivative of the logarithm of the number of microstates
of a system. In columns 5 and 10 of Table 4.5 we show the inverse slope of the entropy Sa(F4)
and Sp(Ep) of subsystems A and B calculated from the central difference approximation for the
slopes at F4 and Ep, that is,

1 [S(E+AE)—S(E—AE))
T(E) ~ 2AE ' (412)

(We have chosen units such that Boltzmann’s constant k = 1.) We see from Table 4.5 that the
inverse slopes of Sa(F4) and Sp(Ep) are approximately equal at F4 = Ea =4, corresponding to
the value of the most probable energy. (For this small system the entropy of the composite system
is not a continuous function of F 4, and thus we do not expect the slopes to be precisely equal.) We
conclude that our tentative association of the temperature with the inverse slope of the entropy is

plausible.

To obtain more insight into how temperature is related to the slope of the entropy, consider an
energy away from equilibrium, say F4 = 2. Note that the slope 0.60 of S4(E4 = 2) in Table 4.5
is larger than the slope 0.30 of Sp(Ep = 8). Hence, if energy is transferred from B to A, the
entropy gained by A (AS = (0S/0F)AFE) will be greater than the entropy lost by B, and the total
entropy would increase as we expect. Because we know that energy is spontaneously transferred
from “hot” to “cold,” a larger slope must correspond to a lower temperature. This reasoning again
suggests that the temperature is associated with the inverse slope of the energy dependence of the
entropy.

Problem 4.7. More on two Einstein solids in thermal contact

Program EntropyEinsteinSolid computes the entropies of two Einstein solids in thermal contact.

(a) Explore the effect of increasing the values of N4, Npg, and the total energy Fiot. Discuss the
qualitative dependence of S4, Sp, and Sio on the energy E4. In particular, explain why S4
is an increasing function of E4 and Sp is a decreasing function of E4. Given this dependence
of S4 and Sp on E4, why does Siot have a maximum at a particular value of E4?
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Ex | Qa(Ea) | mQa(EA) | T' | Ta || Es | Qs(Ep) | mQp(Ep) | T5' | Ts | Q405

10 66 4.19 na | na | O 1 0 na | na 66
9 55 4.01 0.19 | 522 || 1 4 1.39 1.15 | 0.87 | 220
8 45 3.81 021 | 472 | 2 | 10 2.30 0.80 | 1.24 | 450
7 36 3.58 0.24 | 420 | 3 | 20 3.00 0.63 | 1.60 | 720
6 28 3.33 027 | 371 | 4 | 35 3.56 0.51 | 1.94 | 980
5 21 3.05 031 | 320 | 5 | 56 4.03 0.44 | 2.28 | 1176
4 15 2.71 037|270 | 6 | 84 4.43 0.38 | 2.60 | 1260
3 10 2.30 0.46 | 2.18 | 7 | 120 4.79 0.34 | 2.96 | 1200
2 6 1.79 0.60 | 1.66 || 8 | 165 5.11 0.30 | 3.30 | 990
1 3 1.10 0.90 | 1.11 || 9 | 220 5.39 0.28 | 3.64 | 660
0 1 0 na | na | 10 | 286 5.66 na | na 286

Table 4.5: The number of microstates of subsystems A and B for total energy Eyoy = Fa+Ep = 10
and Ny = 3 and Np = 4. The number of states was determined using (4.3). There are a total
of 8008 microstates. The most probable energy of subsystem A is E4 = 4 and the fraction of
microstates associated with the most probable macrostate is 1260/8008 ~z 0.157. This fraction will
approach one as the number of particles in the systems become larger.

(b) The values of the magnitudes of the inverse slopes dS4/dE4 and dSp/dEp can be obtained
by clicking on the corresponding curves. The values of the magnitudes of the inverse slopes
are given in the lower right corner. What is the relation of these slopes to the temperature?
Determine the value of F4 at which the slopes are equal. What can you say about the total
entropy at this value of F4?7 Consider a number of different values for N4, Np and Ei,. Be
sure to include a case where Ny # Np. O

We will formally develop the relations between the number of accessible microstates of an
isolated system to various quantities including the entropy and the temperature in Section 4.5.

Boltzmann probability distribution. We next consider the Einstein solid in another physical
context. Consider an isolated Einstein solid of six particles with total energy Fio¢ = 12. We
focus our attention on one of the particles and consider it as subsystem A; subsystem B consists
of the other five particles. This example is similar to the ones we have considered, but in this
case subsystem A consists of only one particle. The quantity of interest is the mean energy of
subsystem A, and the probability P, that the subsystem is in microstate n with energy €,. Note
that for a system of one particle the symbol n refers to the quantum number of the particle and
hence its energy. The number of ways that subsystem A can be in microstate n is one because it
consists of only one particle. Thus, for this special subsystem of one particle, there is a one-to-one
correspondence between the microstate of the system and the energy of the system.

The number of accessible microstates of the composite system is shown in Table 4.6 using the
relation (4.3). The probability P, that the subsystem is in microstate n is plotted in Figure 4.3.
Note that P, decreases monotonically with increasing energy. A visual inspection of the energy
dependence of P, in Figure 4.3 indicates that P, can be approximated by an exponential,

P, oc e Pen, (4.13)
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microstate n | €, | Fiot — €n Qp P, (en)
2 12 0 17014 = 1| 0.00016
1 11 1 5U/(114) = 5 | 0.00081
10 10 2 6l/(214) = 15 | 0.00242
9 9 3 7/(314) = 35 | 0.00566
8 8 4 8l/(al4y = 70 | 0.01131
7 7 5 9/(514) = 126 | 0.02036
6 6 6 101/(6!4)) = 210 | 0.03394
5 5 7 111/(714)) = 330 | 0.05333
4 4 8 121/(8141) = 495 | 0.07999
3 3 9 131/(9141) = 715 | 0.11555
2 2 10 141/(10141) = 1001 | 0.16176
1 1 11 151/(11141) = 1365 | 0.22059
0 0 12 161/(12141) = 1820 | 0.29412

Table 4.6: The number of microstates accessible to subsystem A consisting of one particle. Subsys-
tem A is in microstate n with energy €, = n and can exchange energy with subsystem B consisting
of five particles. The third column is the energy of subsystem B. The total energy of the composite
system is Eior = 12. The total number of microstates is 6188, and thus P, = (1 x 25)/6188.

where €, = n in this example. The plot of In P, versus ¢, deviates from an exponential because
there is a significant probability that the subsystem has a finite fraction of the total energy for this
small composite system. If the number of particles in the composite system is sufficiently large so
that the probability of the subsystem having a significant fraction of the total energy is negligible,
then the exponential behavior of P, becomes very well defined. These results are generalized in
Section 4.6 where it is shown that the exponential decrease of the probability P, holds exactly
for a system that can exchange energy with a much larger system and that the parameter [ is
proportional to the inverse temperature of the much larger system. The exponential form of P, in
(4.13) is called the Boltzmann distribution.

Note that the probability P, is usually not the same as P(E). In (4.13) they are the same
because there is only one particle in the subsystem, and thus there is only one way for the subsystem
to have energy ¢,. If the subsystem has more than one particle, then there are many ways for the
particles in the subsystem to share the energy (see Table 4.5). Here P(F) for subsystem A is given
by the probability of the subsystem being in a particular microstate with energy E multiplied by
the number of microstates 24 (F) with the same energy E. The probability P(E) is proportional
to the last column in Table 4.5, which is not a Boltzmann distribution and would approach a
Gaussian distribution in the limit of a large number of oscillators.

Problem 4.8. More on Einstein solids

Use the EinsteinSolids program to count the number of microstates for two Einstein solids that
can exchange energy with one another. In this problem we wish to determine the probability
P(E4) that subsystem A has energy F4 given that the total energy is E = E4 + Ep, and the
total number of particles is N4 and Np. The initial distribution of the energy in the program is
not relevant for this problem.
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Figure 4.3: The probability P, for the subsystem to be in microstate n with energy e, = n.

The subsystem can exchange energy with a system of N = 5 particles. The total energy of the

composite system of six particles is Fiot = 12. The circles are the values of P, given in Table 4.6.

(a) Choose E = 200 and Ny = Np = 4 and estimate the width of P4(F4). (Esimate the width
at half the maximum value of P4(F4).) Repeat for Ny = Ngp = 16 and Ny = Np = 64.
How does the width depend on the number of particles? For example, does the width decrease
linearly or by some other power of the number of particles?

(b) Repeat part (a) but with £ = 20. Do you obtain the same dependence of the width on the
number of particles. If not, why not?

(c) Consider E =200, Ny =1 and Np = 15. What is the nature of P(E4)? Explain why the the
curve is a decreasing function of E4. O

Problem 4.9. Qualitative behavior of the probabilities

(a) In Table 4.3 we considered a composite Einstein solid of four particles with two particles in
each subsystem. Use the results of Table 4.3 to calculate the probability that subsystem A is
in a particular microstate.

Use the EinsteinSolids program to help answer the following questions.

(b) The program computes the probability P(E4) that subsystem A has energy E4. Consider
Ny =4, Ng =12 and Ei = 3. Run the program and collect the data from the Data Table
under the Views menu.

(c) Determine the probability Ps(FEs) that subsystem A is in a particular microstate by dividing
P(E4) by the number of microstates with energy E4. Plot Ps(FEy).
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(d) Explain why the probabilities P; and P(F) are not the same. Why is the probability Ps(Fj)
a monotonically decreasing function of F,? What is the qualitative behavior of P(FE)? O

Problem 4.10. Rapid increase in the number of states

(a) Consider an Einstein solid of N = 20 distinguishable particles. What is the total number of
accessible microstates Q(E) for E = 10, 102, 103,...7 Is Q(E) a rapidly increasing function of
E for fixed N7

(b) Is © a rapidly increasing function of N for fixed E? O

4.3 Counting Microstates

In the examples we have considered so far, we have seen that the most time consuming task is
enumerating (counting) the number of accessible microstates for a system of fixed energy and
number of particles. We now discuss how to count the number of accessible microstates for several
other systems of interest.

4.3.1 Noninteracting spins

We first reconsider an isolated system of N noninteracting spins with spin 1/2 and magnetic
moment g in an external magnetic field B. Because we can distinguish spins at different lattice
sites, a particular microstate or configuration of the system is specified by giving the orientation
(up or down) of each of the N spins. We want to find the total number of accessible microstates
Q(E, B, N) for particular values of E, B, and N.

We know that if n spins are parallel to B and N — n spins are antiparallel to B, the energy
of the system is
E=n(—uB)+ (N —n)(uB) = —(2n — N)uB. (4.14)

For a given N and B, n specifies the energy and vice versa. If we solve (4.14) for n, we find

N E
== - —. 4.15
TS T B (4.15)
As we found in (3.86), the total number of microstates with energy E is given by the number of
ways n spins out of NV can be up. This number is given by

N!

Qn, N) = Srm =

(4.16)

where n is related to F by (4.15). We will apply this result in Example 4.1 on page 198.
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Figure 4.4: The phase space of a single particle of mass m with energy less than or equal to F in
a one-dimensional box of length L. The maximum value of the momentum is ppax = V2mE. Any
point within the shaded rectangle corresponds to a microstate with energy less than or equal to E.

4.3.2 A particle in a one-dimensional box

Classical calculation. Consider the microstates of a single classical particle of mass m confined
to a one-dimensional box of length L. We know that the microstate of a particle is specified by
its position x and momentum p.2 We say that the microstate (x,p) is a point in phase space (see
Figure 4.4).

Because the values of the position and momenta of a particle are continuous variables, the
number of microstates of the system with energy E is not meaningful and instead we will determine
the quantity g(E)AE, the number of microstates between E and E + AFE; the quantity g(FE) is
the density of states. However, it is easier to first calculate I'(E), the number of microstates of the
system with energy less than or equal to E (see Table 4.7). The number of microstates between E
and E + AE, g(E)AE, is related to T'(E) by

J(E)AE = T(E + AE) — T(E) ~ % AE. (4.17)

If the energy of the particle is E and the dimension of the box is L, then the microstates of
the particle with energy less than or equal to E are restricted to the rectangle shown in Figure 4.4,
where ppax = V2mE. Because the possible values of x and p are continuous, there are an infinite
number of microstates within the rectangle. As we discussed in Section 3.6, we have to group or
bin the microstates so that we can count them, and hence we divide the rectangle in Figure 4.4
into bins or cells of area AxAp.

The area of the phase space occupied by the trajectory of a particle whose position x is less
than or equal to L and whose energy is less than or equal to E is equal to 2pynaxL. Hence, the
number of cells or microstates equals

2pmaxL _ L
La(E) = AzAp T AzAp

2We could equally well specify the velocity v rather than p, but the momentum p is the appropriate conjugate
variable to  in the Hamiltonian formulation of classical mechanics.

(2mE)'/2. (4.18)




CHAPTER 4. STATISTICAL MECHANICS 187

Q(E) Number of microstates with energy F.

I'(E) Number of microstates with energy less than or equal to E.
g(E)AE | Number of microstates between E and F + AE.

g(E) Density of states.

Table 4.7: Summary of the functions used to count microstates.

In classical physics there is no criterion for choosing the values of Ax and Ap. What is the
corresponding density of states?

Quantum calculation. The most fundamental description of matter at the microscopic level is
given by quantum mechanics. Although the quantum mechanical description is more abstract, we
will find that it makes counting microstates more straightforward (in principle).

As before, we consider a single particle of mass m in a one-dimensional box of length L.
According to de Broglie, a particle has wave properties associated with it, and the corresponding
standing wave has a node at the boundaries of the box. The standing wave with one antinode can
be represented as in Figure 4.5; the corresponding wavelength is given by

A=2L. (4.19)

The greater the number of antinodes of the wave, the greater the energy associated with the
particle. The possible wavelengths that are consistent with the boundary conditions at = 0 and
x = L satisfy
2L
Ap = —, (n=1,2,3,...) (4.20)

n

where the index n labels the quantum state of the particle and can be any nonzero, positive integer.
From the de Broglie relation,

=, 4.21
p=x (4.21)
and the nonrelativistic relation between the energy E and the momentum p, E = p?/2m, we find
that the energy eigenvalues of a particle in a one-dimensional box are given by

_bn WP e (4.22)

" 2m o 2mA2 8mL?’

It is straightforward to count the number of microstates with energy less than or equal to E

by solving (4.22) for n:

n= %(mE)l/?. (4.23)

Because successive microstates correspond to values of n that differ by one, the number of states
with energy less than or equal to F is given by
2L
Cqm(E) =n = T(2mE)1/2. (4.24)

Unlike the classical case, the number of states T'ym(E) for a quantum particle in a one-
dimensional box has no arbitrary parameters such as Az and Ap. If we require that the classical
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0 L

Figure 4.5: Representation of the minimum energy standing wave for a particle in a one-dimensional
box. Note that the standing wave equals zero at x = 0 and x = L.

and quantum enumeration of microstates agree in the semiclassical limit,? we see that the number
of microstates, I'c;(E) and I (E), agrees for all E if we let 2/(AxzAp) = 1/(wh). This requirement
implies that the area AzAp of a cell in phase space is given by

Az Ap = h. (4.25)

We see that Planck’s constant i can be interpreted as the minimum area of a cell in a two-
dimensional phase space. That is, in order for the counting of microstates in a classical system to
be consistent with the more fundamental counting of microstates in a quantum system, we cannot
specify a microstate of the classical system more precisely than to assign it to a cell of area h in
phase space. This fundamental limitation implies that the subdivision of phase space into cells
of area less than h is physically meaningless, a result consistent with the Heisenberg uncertainty
principle.

It will be convenient to introduce the wave number k by the relation k = 27/X. Then we can
rewrite the de Broglie relation (4.21) as

p = hk. (4.26)

For a particle in a one-dimensional box, we can express the condition (4.20) for a standing wave as

k= %n (n=1,23..) (4.27)

Problem 4.11. Suppose that the energy of an electron in a one-dimensional box of length L is
E =144 (h?/8mL?). How many microstates are there with energy less than or equal to this value
of E? O

4.3.3 One-dimensional harmonic oscillator

The one-dimensional harmonic oscillator provides another example for which we can straightfor-
wardly count the number of microstates in both the classical and quantum cases. The total energy

3Note that the semiclassical limit is not equivalent to simply letting A — 0.
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of the harmonic oscillator is given by

2
_»p 1 o
E= 5o + 5L, (4.28)

where k is the spring constant and m is the mass of the particle.

Classical calculation. The part of phase space traversed by the trajectory xz(t),p(t) can be
determined from (4.28) by dividing both sides by E and substituting w? = k/m:

a(t)® | pt)?
2E/mw?  2mE

=1. (4.29)

where the total energy E is a constant of the motion. From the form of (4.29) we see that the
shape of phase space of a one-dimensional harmonic oscillator is an ellipse,

Py, (4.30)

with a? = 2E/(mw?) and b? = 2mE. Hence, the area of phase space with energy less than or equal
to E is mab = 2w E/w, and the number of states in this region is

~ mab  27E
C AzAp  wAzAp’

Ca(E) (4.31)

Quantum mechanical calculation. The energy eigenvalues of the harmonic oscillator are given

by
1
B, = (n—|—§) ho.  (n=0,1,2 ..) (4.32)
Because n changes by one, the number of microstates is given by
E 1 E

The constant 1/2 can be neglected in the limit E > hiw. We see that I'qm(E) = Ta(E) for all E,
if 2w /(Axz Ap) = h or Az Ap = h as before.

4.3.4 One particle in a two-dimensional box

Consider a single particle of mass m in a rectangular box of sides L, and L,. The energy of the
particle is given by

1
E=—(p,° 2). 4.34

In two dimensions the wave number becomes a wave vector k, which satisfies the one-dimensional
condition in each direction (see (4.27))
T T

ky = —ng, ky = —ny. (ng,ny =1,2,3,...) (4.35)
L:E Y Ly Y Y
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Figure 4.6: The points represent possible values of n, and n, such that R? = n2 + n% = 122. Note
that n, and n, are integers with n;,n, > 1. Each point represents a single particle microstate.
What is the total number of states for R = 127 The corresponding number from the asymptotic
relation is I'(E) = 7 122/4 ~ 113.

The corresponding eigenvalues are given by

h? [n.2  n,?
e, = —— + 2. 4.36
T 8m [LQC2 Lyg] (4.36)

The states of the particle are labeled by the two integers n, and n, with n,,n, > 1. The area
associated with each single particle state in the space defined by the points (n,, n,) is one as can
be seen in Figure 4.6. For simplicity, we assume that L, = L, = L. The values of (n,,n,) for a
given FE satisfy the condition

2 2 2 2LN?
R2=n,2+n,?= (T) (2mE). (4.37)
For large values of n, and n, the values of n, and n, that correspond to states with energy less
than or equal to E lie inside the positive quadrant of a circle of radius R, where

R= %(mE)l/?. (4.38)

Hence, the number of states with energy less than or equal to E is given by
2

1 L
I'(E) = Zw}# =7

- (2mE). (4.39)
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Note that V' = L? in this case.

Problem 4.12. Finite size effects in two dimensions

The expression (4.39) for T'(E) is valid only for large E because the area of a quadrant of a
circle overestimates the number of lattice points n,,n, inside a circle of radius R. Use the
IdealGasNumberOfStates program to explore how the relation I' = 7wR?/4 approximates the
actual number of microstates. The program computes the number of nonzero, positive integers
that satisfy the condition n2 +n? < R?. What is the minimum value of R for which the difference
between the asymptotic relation and the exact number is less than 1%? O

4.3.5 One particle in a three-dimensional box

The generalization to three dimensions is straightforward. If we assume that the box is a cube
with linear dimension L, we have

h2
= 8mlL2

The values of n,, ny, and n. that correspond to microstates with energy less than or equal to £
lie inside the positive octant of a sphere of radius R given by

[n2 +n2 4+ n?]. (4.40)

2
R? = ng +ny +n; = (%) (2mE). (4.41)
Hence » - oy
—(Z p3\ T (22 32 _ ATV 3/2
(B) = < (578") = 2(5) (emE) = 5 (2mE)*”, (4.42)

where we have let V = L3.

Problem 4.13. Finite size effects in three dimensions

The expression (4.42) for I'(E) is valid only for large E because the area of an octant of a sphere
overestimates the number of lattice points n,,n,,n.. Use the IdealGasNumberOfStates program
to determine how the relation I' = wR3/6 approximates the total number of microstates, as in
Problem 4.12. O

Problem 4.14. Estimation of the number of states

Estimate the number of microstates accessible to a gas molecule in a one liter box at room temper-
ature. The mean energy F of a gas molecule such as nitrogen at room temperature can be found
from the relation £ = 3kT/2. Consider an energy interval AE = 10727 J that is much smaller
than E, and calculate the number of microstates g(E)AFE accessible to the molecule in the interval
between F and E 4+ AFE. Refer to (4.42) and (4.17). O

4.3.6 Two noninteracting identical particles and the semiclassical limit

Consider two noninteracting particles of mass m of the same species in a one-dimensional box of
length L. The total energy is given by
h2

Brams = g12

(n} +n3), (4.43)
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where the quantum numbers n; and ne are positive nonzero integers. To count the microstates
correctly, we need to take into account that particles of the same species are indistinguishable, one
of the fundamental principles of quantum mechanics.

As an example of how to count the microstates of this two particle system, suppose that each
particle can be in one of the four lowest single particle energy states. The values of n; and nso
that satisfy this constraint are given in Table 4.8. The indistinguishability of the particles means
that we cannot assign the quantum numbers n; independently no. For example, because the state
(n1 = 1,n2 = 2) is indistinguishable from the state (n; = 2,n2 = 1), we can include only one of
these states.

The assignment of quantum numbers is further complicated by the fact that the particles must
obey quantum statistics. We will discuss the nature of quantum statistics in Section 6.3. In brief,
particles must obey either Bose or Fermi statistics. If the particles obey Bose statistics, then any
number of particles may be in the same single particle quantum state. In contrast, if the particles

obey Fermi statistics, then two particles may not be in the same single particle quantum state,
and hence the states (n1,n2) = (1,1), (2, 2), (3,3) and (4,4) are excluded.

distinguishable particles || Bose statistics || Fermi statistics

ni | n2 ni | n2 ni | n2
1 1 1 1

2 1 1 2 1
1 2

2 2 2 2

3 1 3 1 3 1
1 3

3 2 3 2 3 2
2 3

3 3 3 3

4 1 4 1 4 1
1 4

4 2 4 2 4 2
2 4

4 3 4 3 4 3
3 4

4 4 4 4

Table 4.8: The microstates of two identical noninteracting particles of mass m in a one-dimensional
box such that each particle can be in one of the four lowest energy states. The rows are ordered
by their total energy. If the particles obey Fermi statistics, they cannot be in the same microstate,
soni = 1, ny = 1 is not allowed. There is no such restriction for Bose statistics. Because the
particles are identical and hence indistinguishable quantum mechanically, ny = 1, no = 2 and
n1 = 2, ng = 1 are the same microstate.

Because the particles are indistinguishable, there are fewer microstates than if the particles
were distinguishable, and we might think that enumerating the accessible microstates is easier.
However, it is much more difficult because we cannot enumerate the states for each particle indi-
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vidually even though the particles do not interact. For example, if n; = 1, then ny # 1 for Fermi
statistics. However, the counting of microstates can be simplified in the semiclassical limit. In this
limit the number of single particle states is much greater than the number of particles. (Obviously,
that is not the case in our simple example where each particle is limited to four states.) In the
semiclassical limit we do not care if two particles are put in the same single particle state because
there will be many more states where this counting error (for fermions) does not occur. Hence we
can assign states to one particle separately without regard to the state of the other particle.

In our example there is a maximum of 4 x 4 = 16 possible states because particles 1 and 2
can each be in one of four states. Because the particles are indistinguishable and a state such as
n1 = 3, ny = 4 cannot be distinguished from n; = 4, no = 3, we divide by 2! to approximately
correct for overcounting. This correction gives (4 x 4)/2! = 8 states. The actual number for Bose
statistics is 10 and Fermi statistics is 6. Dividing by 2! is not a good approximation for such a
small system. However, if the number of possible states I' for each particle is much greater than
the number of particles N, then dividing by N! is a very good approximation. To understand the
nature of this approximation lets consider the equivalent problem of the number of ways of putting
N identical balls into I' boxes. This number is given by

(N+T—1)!
NIT — 1)

Equation (4.44) is the same expression we used for counting the number of identical quanta of
energy that can be distributed among distinct oscillators in the Einstein model. Note that (4.44)
counts all the ways of placing the balls into boxes, including putting more than one ball into a
box. You can test (4.44) by working out a simple example. In (4.44) the last I" — 1 factors in the
numerator are canceled by (I' — 1)! in the denominator, and we are left with N more factors, each
of which are approximately equal to I" if I' > N. Thus, to convert the number of ways of assigning
N distinguishable particles (I'V) to the number of ways of assigning N indistinguishable particles,
we need to divide T'V by N!. Another way of obtaining this result is to assume that N of the
boxes have been filled with one ball each. There is only way to do so if the balls are identical. If
the balls are distinguishable, there are N different balls that can occupy box 1, which leaves N — 1
different balls that can occupy box 2, IV — 2 balls that can occupy box 3, and so on, which leads to
the factor of N!. Because I' > N, the probability of multiple occupancy of any state is negligible
and, thus there is no distinction between Bose and Fermi systems in the semiclassical limit.

(4.44)

4.4 The Number of States of Many Noninteracting Parti-
cles: Semiclassical Limit

We now apply these considerations to determine the number of microstates of an ideal classical
gas of N particles in a three-dimensional box in the semiclassical limit. (A simpler way to do so
that yields the correct E and V' dependence is given in Problem 4.15, but the numerical factors
are not identical to the result of the more accurate calculation that we discuss here.)

The idea is to first count the microstates assuming that the N particles are distinguishable
and then divide by N! to correct for the overcounting. We know that for one particle in a three-
dimensional box the number of microstates with energy less than or equal to F is given by the vol-
ume of the positive part (or octant) of the three-dimensional sphere of radius R = (2L/h)(2mE)'/?
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(see (4.38)). For N distinguishable particles in a three-dimensional box, the number of microstates
with energy less than or equal to E is given by the volume of the positive part of a 3/N-dimensional
hypersphere of radius R = (2L/h)(2mE)*/?. In Section 4.14.1 we write the volume Vj,(R) of a
n-dimensional hypersphere of radius R as

V. (R) :/ dxy dxg -+ - da,. (4.45)
+ad+-ta2 <R

where z; is the position coordinate in the ith direction. For example, in three dimensions (x1, x2, x3)
represents the usual coordinates (x,y, z). The volume V,,(R) is given by (see Section 4.14.1)

27/ 2 n .
Va(R) = WR , (integer n) (4.46)

where the Gamma function satisfies the relations I'(n + 1) = nI'(n), I'(1/2) = \/m. For integer n
I'(n) = (n — 1)!, and the Gamma function can be interpreted as a generalization of the factorial.
The cases n = 2 and n = 3 yield the expected results, Vo = 2rR?/(2I'(1)) = 7R? because I'(1) = 1,
and V3 = 273/2R3 /(3T(3/2)) = 47 R?/3 because T'(3/2) = T'(1/2)/2 = /7/2. The volume of the
positive part of the n-dimensional sphere of radius R is given by

I(R) = (%)nVn(R). (4.47)

We are interested in the case n = 3N and R = (2mFE)Y?(2L/h). In this case the volume
I'(E,V,N) is given by

[(E,V,N) = (%)SNW?))?VB—%RSN/? (4.48a)
_ (%)W 5 ;]j;) RN/ (4.48b)
=) D)™ Gapeme” (450

(%)N (272;"]5)23)” ’ (4.48d)

If we include the factor of 1/N! to correct for the overcounting of microstates in the semiclassical
limit, we obtain the desired result:

1 ( 1% )N (2rmE)3N/?

NEVN) =558 (3N/2)!

(semiclassical limit) (4.49)

I'(E,V,N) is the number of states of N noninteracting particles in a three-dimensional box of
volume V' in the semiclassical limit.

4The volume T, (R) should not be confused with the Gamma function T'(n).
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A more convenient expression for T'(F, V, N) can be found by using Stirling’s approximation
(3.101) for N > 1. We have

vV 3 3N
InD(E,V,N) = =In Nl 4 Nln— + SN In(2rmE) ~ In (7)' (4.50a)
N N N
~—-NInN+N+NhV - 37111}12 + gNln(Zﬂ'mE) - gNln% + 37 (4.50b)
vV 3 drmE 5
It is frequently convenient to write InT'(E,V, N) in terms of 7 instead of h:
vV 3 mE 5

Problem 4.15. Approximate expression for T'(E, V, N)

We can obtain an approximate expression for I'(F, V, N) using simpler physical considerations. We
write
N

T(E,V,N) ~ %rl(%,v)n(%,v) ...rl(%,v) - %rl(%v) , (4.52)
where I'1(E, V) is the number of states of a single particle with energy less than E in a three-
dimensional box of volume V. We have assumed that on the average each particle has an energy
E/N. Find the form of T'(E, V, N) using the relation (4.42) for I';. How does the dependence on
V and F of T'(E, V, N) obtained from this simple argument compare to the V and E dependence
of  in (4.49). What about the N-dependence? O

Problem 4.16. Density of states of an ideal gas

Use (4.51) to calculate the density of states g(F,V, N) and verify that T'(E,V, N) and ¢g(E,V,N)
are rapidly increasing functions of E,V, and N. O

4.5 The Microcanonical Ensemble (Fixed E, V, and N)

The macrostate of an isolated system of particles is specified by the energy E, volume V', and
number of particles N of the system. All the microstates that are consistent with these conditions
are assumed to be equally probable. The collection of systems in the different microstates with the
specified values of E, V, and N is called the microcanonical ensemble. More precisely, because the
energy F is a continuous variable, the energy is specified to be in the range E to F + AFE, where
AE K E.

In the following we show how the quantities that correspond to the usual thermodynamic
quantities, for example, the entropy, temperature, and pressure, are related to the number of
microstates. (It might be helpful to review the sections in Chapter 2 on the definitions of the
various thermodynamic derivatives and free energies.) We will then use these relations to derive
the ideal classical gas equation of state and other well known results using (4.51) for the number
of microstates of an ideal gas of N particles in a volume V with energy less than or equal to F in
the semiclassical limit.
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We first establish the connection between the number of accessible microstates to various ther-
modynamic quantities by using arguments that are similar to our treatment of the simple models
that we considered in Section 4.2. Consider two isolated systems A and B that are separated by an
insulating, rigid, and impermeable wall. The macrostate of each system is specified by E4, V4, Na
and Ep,Vp, Np, respectively, and the corresponding number of microstates is Qa(Ea, Va, Na)
and Qp(Fp, Ve, Ng). Equilibrium in this context means that each accessible microstate is equally
represented in the ensemble. The number of microstates of the composite system consisting of the
two isolated subsystems A and B is

Q=Qu(Ea,Va,Na)Qp(EB, VB, NB). (4.53)

We want a definition of the entropy that is a measure of the number of microstates and that
is additive for independent systems. We will assume that S is related to Q by”

(s

If we substitute (4.53) in (4.54), we find that S = S4 + Sp, and S is an additive function.

Next we modify the wall between A and B so that the wall becomes conducting, but remains
rigid and impermeable. We say that we have relaxed the internal constraint of the composite
system. The two subsystems are now in thermal contact so that the energies F4 and Ep can
vary, subject to the condition that the total energy F = E4 + Ep is fixed; the volumes Vi
and Vp and particle numbers Ny and Np remain unchanged. What happens to the number of
accessible microstates after we relax the internal constraint? If subsystem A has energy Egu, it
can be in any one of its (E4) microstates. Similarly, subsystem B can be in any one of its
Qp(E — E,4) microstates. Because every possible microstate of A can be combined with every
possible microstate of B to give a different microstate of the composite system, it follows that the
number of microstates accessible to the composite system when A has energy E 4 is the product
Da(E4)Qp(E — E4). Hence, the total number of accessible microstates of the composite system
is

QUE) = Qa(Ea)Qp(E — Ea). (4.55)
Ea

The probability that system A has energy F 4 is given by

QA(EA)Q5(E — Ex)
Q(B)

P(E,s) = (4.56)
Note that we have implicitly assumed that the interaction between the two systems is weak so
that the microstates of each system are unchanged. Because the two systems interact only at the
boundary between them, the fraction of particles at the boundary goes to zero in the thermody-
namic limit N,V — oo, p = N/V = constant. That is, the number of particles at the boundary is
proportional to the surface area L2, and the number of particles in the bulk is proportional to the
volume V = L3, where L is the linear dimension of the system.

The logarithm of (4.55) does not yield a sum of two functions. However, the dominant con-
tribution to the right-hand side of (4.55) for N > 1 comes from the term with EF4 = E4, where

5Equation (4.54) is a consequence of Boltzmann’s work, but was first written in this form by Max Planck. The
constant k is known as Boltzmanns constant but was first introduced by Planck.
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E4 is the most probable value of F4. With this approximation we can write
QE) ~ QA(EA)Qp(E — Ey). (4.57)

The approximation (4.57) better approximates the sum in (4.55) as the thermodynamic limit is
approached and allows us to write

S=klnQ =S4+ Sp (4.58)

before and after the constraint is removed. We see that one consequence of the proposed relation
between S and € is that the entropy increases or remains unchanged after an internal constraint
is relaxed.

Given the definition (4.54) of S as a function of E, V, and N, it is natural to adopt the
thermodynamic definitions of temperature, pressure, and chemical potential:

L (), o
g - (%)EN (4.60)
% B _(S_Jff)E,v' (461)

The definition of the entropy S = kIn ) in (4.54) gives us the desired connection between statistical
mechanics and thermodynamics.

How should we generalize the relation of S to the number of microstates for a system in which
the energy is a continuous variable? Two possibilities are

S=klng(E)AE (4.62a)
S = kInT(E). (4.62b)

It is easy to show that in the limit N — oo, the two definitions yield the same result (see Prob-
lem 4.18). The reason is that I'(E) and g(FE) are such rapidly increasing functions of E that it
makes no difference whether we include the microstates with energy less than or equal to E or just
the states between F and F + AFE.

If we use either of the definitions of S given in (4.62) and (4.51), we find that the entropy of

an ideal gas in the semiclassical limit for N — oo is given by
vV 3 mE 5
+<In }

S(E,V,N):Nk[lnﬁ S+ o)

(4.63)
Problem 4.17. Form of the entropy

Compare the form of S given in (4.63) with the form of S determined from thermodynamic con-
siderations in Section 2.19. O

Problem 4.18. Equivalent definitions of the entropy

Verify the result (4.63) for the entropy S of an ideal gas using either of the definitions of S given
in (4.62). Why can we neglect AE compared to E when we use the definition (4.62a)? O
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We now use the result (4.63) for S to obtain the energy equation of state of an ideal classical
gas. From (4.63) we see that

1 S 3Nk
— = (= =_— 4.64
T (6E)V,N 2 E’ ( )
and hence we obtain the familiar result
E= gNk:T. (4.65)
The pressure equation of state follows from (4.60) and (4.63) and is given by
P S Nk
Y (et = 4.66
T (8V )E,N Vv’ ( )
and hence
PV = NKT. (4.67)

We have finally derived the thermal and mechanical equations of state of an ideal classical gas from
first principles! Do the equations of state depend on /& and parameters such as m which appear in
(4.49)7

Problem 4.19. The Sackur-Tetrode expression for the entropy

Use the relations (4.63) and (4.65) to obtain S as a function of T', V, and N instead of E, V, and
N. This relation is known as the Sackur-Tetrode equation. O

Problem 4.20. The chemical potential of an ideal gas

Use (4.61) and (4.63) to derive the dependence of the chemical potential 1 on E, V, and N for
an ideal classical gas. Then use (4.65) to determine (7, V, N). We will derive p(7T,V, N) for the
ideal classical gas more simply in Section 6.6. |

So far we have used the relation (4.54) between the entropy and the number of accessible
states to find the equation of states of an ideal classical gas. In Example 4.1 we apply the same
formalism to find the energy equation of state of a system of noninteracting spins.

Example 4.1. Isolated system of N spins
Consider a system of N noninteracting spins and find the dependence of its temperature T" on the
total energy E. What is the probability that a given spin is up?

Solution. We first have to find the dependence of the entropy S on the energy E of the system. As
discussed in Sec. 4.3.1, the energy E of a system with n spins up out of NV in a magnetic field B is

E=—-(n—-n"YuB=—[n—(N—-n)uB=—(2n— N)uB, (4.14)

where n’ = N — n is the number of down spins and g is the magnetic moment of the spins. From
(4.14) we find that the value of n corresponding to a given E is given by

n= %(N — u%) (4.68)
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The corresponding number of microstates is given by

Q(n) = 4.1
") = = (4.16)
The thermodynamic temperature T is given by
1 oS dS(n) d 1 dS
1 (_) _dS(m)dn _ 1 d5 (4.69)
T OF/B,N dn dFE 2uB dn
To calculate dS/dn, we use the approximation (3.104) for large n:
< Inn!=Inn (4.70)
dn o ’ '
and find s
d(”) = k[~ Inn +In(N - n)), (4.71)
n
where S(n) = klnQ(n) from (4.16). Hence
1 1 N —n

Equation (4.72) yields T as a function of E by eliminating n using (4.68).

The natural variables in the microcanonical ensemble are E, V', and N. Hence, T is a derived
quantity and is found as a function of E. As shown in Problem 4.21, we can use (4.14) and (4.72)
to express F as a function T'. The result is

B
E = —NpuB tanh ’]:—T = —NuBtanh uB, (4.73)

where 5 = 1/kT.

The probability p that a given spin is up is equal to the ratio n/N. If we solve (4.72) for n/N,
we find (see Problem 4.21)

n 1
P=N = [T mEiT o IBJRT (4.74a)
e,uB/kT eﬁ,uB
= = . (4.74b)
enB/kT + e—wB/kT ebuB 4 e—BuB
We have obtained the result for p that we promised in Section 3.5. O

Note we had to consider all N spins even though the spins do not interact with each other.
The reason is that the N spins have a definite energy and hence we cannot assign the orientation
of each spin independently. We will obtain the result (4.74) by a more straightforward method in
Section 4.6.

Problem 4.21. The energy as a function of the temperature

Solve (4.72) for n/N and verify (4.74). Then use (4.14) to solve for E as a function of T' and verify
(4.73) for a system of N noninteracting spins. O
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ensemble macrostate | probability distribution | thermodynamics
microcanonical | E,V, N P, =1/Q S(E,V,N)=klnQ
canonical T,V,N P,=ePE: /7 F(T,2V,N)=—-kTlnZ
grand canonical | T,V, P, =e PEENI [70 1 Qg(T,V, 1) = —kTIn Zg

Table 4.9: Summary of the three most common ensembles. P; is the probability that the system
is in a particular microstate s.

Although the microcanonical ensemble is conceptually simple, it is almost always not the
most practical ensemble. The major problem is that because we must satisfy the constraint that
FE is specified, we cannot assign energies to each particle individually, even if the particles do not
interact. Also because each microstate is equally probable, there are no obvious approximation
methods that retain only the most important microstates. Moreover, isolated systems are very
difficult to realize experimentally, and the temperature rather than the energy is a more natural
independent variable.

Before we discuss the other common ensembles, we summarize their general features in Ta-
ble 4.9. The internal energy F is fixed in the microcanonical ensemble and the temperature is
a derived quantity. In the canonical ensemble the temperature 7" and hence the mean energy is
fixed, but the energy fluctuates. Similarly, the chemical potential and hence the mean number of
particles is fixed in the grand canonical ensemble, and the number of particles fluctuates. In all
of these ensembles, the volume V' is fixed which implies that the pressure fluctuates. We also can
choose an ensemble in which the pressure is fixed and the volume fluctuates.

*Problem 4.22. The Einstein solid in the microcanonical ensemble

Consider a collection of N distinguishable harmonic oscillators with total energy E. The oscillators
are distinguishable because they are localized on different lattice sites. In one dimension the energy
of each particle is given by €, = (n + %)hw, where w is the angular frequency. Hence, the total
energy can be written as £ = (Q + %N)hw, where @ is the number of quanta. Calculate the
dependence of the temperature T on the total energy E in the microcanonical ensemble using the
result that the number of accessible microstates in which N distinguishable oscillators can share
@ indistinguishable quanta is given by 2 = (Q + N — 1)!/Q!I(N — 1)! (see (4.3)). Then use this
relation to find E(T'). This relation is calculated much more simply in the canonical ensemble as
shown in Example 4.3. O

4.6 The Canonical Ensemble (Fixed T, V, and N)

We now assume that the system of interest can exchange energy with a much larger system known
as a heat bath. The heat bath is sufficiently large that it is not significantly affected by the smaller
system. For example, if we place a glass of cold water into a large room, the temperature of the
water will eventually reach the temperature of the air in the room. Because the volume of the glass
is small compared to the volume of the room, the cold water does not cool the air appreciably and
the air is an example of a heat bath.
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The composite system, the system of interest plus the heat bath, is an isolated system. We
can characterize the macrostate of the composite system by E, V, N. The accessible microstates
of the composite system are equally probable. If the system of interest is in a microstate with
energy FEjs, then the energy of the heat bath is £y, = F — F,. Because the system of interest is
much smaller than the heat bath, we know that E, < E.5

For a given microstate of the system, the heat bath can be in any one of a large number of
microstates such that the total energy of the composite system is E. The probability Py that the
system is in microstate s with energy Ej is given by (see (4.53))

1 x O (E - Ey)
Y O (E - Ey)’

where Qp(E — E;) is the number of microstates of the heat bath for a given microstate s of the

system of interest. As Fy increases, (,(E — Ey), the number of accessible microstates available to

the heat bath, decreases. We conclude that Ps is a decreasing function of Ej, because the larger
the value of F, the less energy is available to the heat bath.

P, (4.75)

We can simplify the form of P, by using the fact that F; < E. We cannot approximate
Oy (E — E,) directly because Qy, is a rapidly varying function of its argument. For this reason we
take the logarithm of (4.75) and write

P, =C+WQy(E, = E — E,), (4.76)

where the constant C' is related to the denominator of (4.75) and does not depend on Es. We now
expand In Qy,(E — Ey) to leading order in Fy and write

In Oy (E
P, ~ C +InQy(E) — E, (MT‘)E‘)))E B (4.772)
b=
Es
We have used the relations (from (4.54) and (4.59))
o 1 . 8anb(Eb)
t= = (Tam e (4.78)

where T is the temperature of the heat bath. As can be seen from (4.78), 3 is proportional to the
inverse temperature of the heat bath. From (4.77b) we obtain

1
P, = — e PB: | (Boltzmann distribution) (4.79)

The function Z is found from the normalization condition )  P; = 1 and is given by

7Z = Z e PBs | (partition function) (4.80)

61t is not obvious how we should assign the potential energy of interaction of particles at the interface of the
system and the heat bath. If the number of particles in the system of interest is large, the number of particles
near the interface between the two systems is small in comparison to the number of particles in the bulk so that
the potential energy of interaction of particles near the surface can be ignored. Nevertheless, these interactions are
essential in order for the system to come into thermal equilibrium with the heat bath.
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_ A"
H/C—C\H H/c—c

cis-2 Butene trans-2 Butene
(a) (b)

Figure 4.7: Butene (C4Hg) is a colorless gas at room temperature and pressure. It exists in four
isomers or structures, two of which are shown. The trans-2 isomer in (b) has lower energy than
the cis-2 isomer in (a).

The Z(T,V,N) is known as the partition function. The symbol Z is from the German Zus-
tandssumme, which means “sum over states.” The form of P in (4.79) applies to a system in
equilibrium with a heat bath at temperature T'. Note that our derivation of the Boltzmann distri-
bution holds for any system in equilibrium with a heat bath and makes no assumption about the
nature of the system and the heat bath.

Problem 4.23. Discuss the relation between the qualitative results that we obtained based on
Table 4.6 and the Boltzmann distribution in (4.79). O

Problem 4.24. Relative abundance of two isomers

The hydrocarbon 2-butene, CH3-CH=CH-CHj occurs in two isomers (geometrical structures)
called cis and trans. The cis (on this side) isomer of 2-butene has both CHj groups on the same
side of the C' = C double bond. In the trans (across) isomer the CHj groups are on opposite sides
of the double bond (see Figure 4.7). The energy difference AE between the two conformations is
approximately AFE/k = 4180K, with the trans isomer lower than the cis isomer. Determine the
relative abundance of the two conformations at T'= 300K and 7" = 1000 K. O

In the canonical ensemble the temperature T is fixed by the heat bath, and a macrostate is

specified by the temperature 7', volume V', and the number of particles N. The mean energy of
the system is given by

E = ZS:PSES = %ZE e PE:, (4.81)

where we have substituted the Boltzmann form (4.79) for the probability distribution. We use a
trick similar to that used in Section 3.5 to obtain a simpler form for E. First we write

— 10 _
=-Z35 Ze BE, (4.82)

where we have used the fact that %(e’ﬁES) = —FE.e PFs. Because

g_g ==Y E.e P, (4.83)
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we can write

10Z 0

E=-293~ "33

InZ| (4.84)

We see that E is a function of T for fixed V and N and can be expressed as a derivative of Z.

In the same spirit we can express Cy/, the heat capacity at constant volume, in terms of Z.
We have

Cy — g_? _ %%, (4.85)
2
-z -7 (5] =
where OF /03 has been calculated from (4.84). Because
E? = %ZE2 e PEs = %g%, (4.87)
we obtain the relation
Oy =0 [ﬁ— Fﬂ . (4.88)

Equation (4.88) relates the response of the system to a change in energy to the equilibrium energy
fluctuations. Note that we can calculate the variance of the energy, a measure of the magnitude of
the energy fluctuations, from the heat capacity. We will later find other examples of the relation
of the linear response of an equilibrium system to the equilibrium fluctuations of an associated
quantity.”

Because the energy is restricted to a very narrow range in the microcanonical ensemble and
can range anywhere between zero and infinity in the canonical ensemble, it is not obvious that the
two ensembles give the same results for the thermodynamic properties of a system. One way to
understand why the thermodynamic properties are independent of the choice of ensemble is to use
the relation (4.88) to estimate the range of energies in the canonical ensemble that have a significant
probability. Because both E and Cy are extensive quantities, they are both proportional to N.
Hence, the N-dependence of the relative fluctuations of the energy in the canonical ensemble is
given by

7 _F TT20 1/2
B oE _ VETTCY N ~N~2, (4.89)
E E N
From (4.89) we see that in the limit of large N, the relative fluctuations in the values of E that
would be observed in the canonical ensemble are vanishingly small. For this reason the mean
energy in the canonical ensemble is a well defined quantity just like it is in the microcanonical
ensemble. However, the fluctuations in the energy are qualitatively different in the two ensembles.

"The relation (4.88) is important conceptually and is useful for simulations at a given temperature (see Sec-
tion 4.11). However, it is almost always more convenient to calculate Cy from its definition in (4.85).
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Problem 4.25. Distribution of energy in the canonical ensemble

Given what you have learned so far about the N-dependence of the relative energy fluctuations,
what is your best guess for the form of the probability that a system in equilibrium with a heat bath
at temperature 1" has energy between E and E 4+ AE? The form of the probability distribution of
the energy of a system in the canonical ensemble is derived in Section 4.14.2. O

Problem 4.26. The Boltzmann probability given by (4.79) is the probability that the system is
in a particular microstate with energy Fs. On the basis of what you have learned so far, what
do you think is the form of the probability p(E)AFE that the system has energy between F and
E+ AFE? O

In addition to the relation of the mean energy to d1ln Z/93, we can express the mean pressure
P in terms of 9ln Z/0V. If the system is in microstate s, then a quasistatic change dV in the
volume produces the energy change

dEs
av

dE, = ( )T.’NdV — —m,dV. (4.90)

The quantity dFs in (4.90) is the work done on the system in microstate s to produce the volume
change dV. The relation (4.90) defines the contribution to the pressure 7y = —dE;/dV of the
system in microstate s.® Hence, the mean pressure of the system is given by

— dE;
P=— v P, = ZS:WSPS. (4.91)
From (4.79), (4.80), and (4.91) we can express the mean pressure as
— olnZ
P=kT . 4.92
( oV )T,N ( )

Note that to define the mean pressure we assumed that a small change in the volume does
not change the probability distribution P, of the microstates, but changes only the energy E; of
the microstates. A perturbation of the system will usually induce transitions between the different
microstates of the system and hence change the probabilities P as well as the energy of the
microstates. That is, if the system is initially in microstate s, it will usually not stay in this
microstate as the volume is changed. However, if the change occurs sufficiently slowly so that the
system can adjust to the change, then the system will remain in microstate s. As discussed in
Chapter 2, page 31, such a change is quasistatic.

We can use the relation £ = > PsEs to write the total change in the energy as

dE = E.dP,+Y_ P.dE,. (4.93)

The second term in (4.93) can be written as

dE, —
> P.dE,=)_P. —rdV = —Pdv. (4.94)

8We have written the pressure in microstate s as s rather than Ps or ps to avoid confusion with the probability.
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Figure 4.8: (a) Schematic drawing of the eigenstates of a system and their probabilities. (b) The
change in the eigenstates of the system when the volume is decreased quasistatically and work is
done on the system. No energy is transferred by heating. Note that the probabilities have not
changed, and thus the entropy of the system is unchanged. (c¢) The change in the probabilities of
the eigenstates when energy is transferred to the system by heating, and no work is done on the
system. In this case the eigenstates are unchanged, but the entropy has increased.

The right-hand side of (4.93) is thus the work done on the system, and we can rewrite (4.93) as
dE =Y E.dP, - PdV. (4.95)
If we use the fundamental thermodynamic relation (2.128), dE = T'dS — PdV (for fixed N), we
can identify the first term in (4.95) with the change in entropy of the system. Hence, we have
TdS = E,dP.. (4.96)

From (4.96) we see that a change in entropy of the system is related to a change in the probability
distribution (see Figure 4.8).

We can use (4.96) to obtain an important expression for the entropy. We rewrite Py, = e~ 7%= /7
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as Es = —kT(InZ + In Ps), and substitute this relation for F; into (4.96):

TdS =Y E.dP,=—kT» InZdP,—kT Y InP.dP,. (4.97)

The first term in (4.97) is zero because the total change in the probability must sum to zero. From
(4.97) we write

dS=—k>» InP.dP,, (4.98a)

= k> d(P,InP,), (4.98b)

where we have again used the fact that > dP; = 0. We integrate both sides of (4.98b) to obtain
the desired result:

S=-kY P.nP,| (4.99)

We have assumed that the constant of integration is zero (see the discussion after (4.100)). The
quantity defined by (4.11) and (4.99) is known as the statistical entropy in contrast to the thermo-
dynamic entropy introduced in Chapter 2. Note the similarity of (4.99) to the uncertainty function
defined in (3.36).

The relation (4.99) for S is also applicable to the microcanonical ensemble. If there are €
accessible microstates, then P; = 1/ for each microstate because each microstate is equally likely.
Hence,

2011 11
S= kS Zlne=—kQ=In= =klnQ. 4100
;QHQ o'~ (4.100)

The constant of integration in going from (4.98b) to (4.99) must be set to zero so that S reduces to
its form in the microcanonical ensemble. We see that we can interpret (4.99) as the generalization
of its microcanonical form with the appropriate weight for each microstate.

The relation (4.99) is of fundamental importance and shows that the entropy is uniquely
determined by the probability distribution P, of the different microstates. Note that complete
predictability (only one accessible microstate) implies the vanishing of the entropy. Also as the
number of accessible microstates increases, the greater the value of S and hence the higher the
degree of unpredictability of the system.

The idea of entropy has come a long way. It was first introduced into thermodynamics as a state
function to account for the irreversible behavior of macroscopic systems under certain conditions.
The discovery of the connection between this quantity and the probability distribution of the
system’s microstates was one of the great achievements of Ludwig Boltzmann. It is remarkable that
the statistical entropy defined by (4.11) and (4.99) is equivalent to the thermodynamic definition
which can be expressed as 40

ds = T (4.101)
for a quasistatic process. Since then, our understanding of entropy has been extended by Shannon
and Jaynes and others to establish a link between thermodynamics and information theory (see
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Section 3.4.1). In this context we can say that S is a measure of the lack of information, because
the greater the number of microstates that are available to a system in a given macrostate, the
less we know about which microstate the system is in.

Although the relation (4.99) is of fundamental importance, we will not use it to calculate the
entropy in any of the applications that we consider because it is difficult to calculate the sum. The
calculation of the entropy will be discussed in Section 4.7.

The statistical basis of the third law of thermodynamics. We can now see how the third
law of thermodynamics (see Section 2.20, page 74) follows from the statistical definition of the
entropy. At T = 0 the system is in the ground state which we will label by 0. From (4.99) we see
that if P = 1 for microstate 0 and is zero for all other microstates, then S = 0. We conclude that
S — 0 as T'— 0 if the system has an unique ground state. This behavior is what is expected for
simple systems.

If there are g(0) microstates with the same ground state energy, then the corresponding (resid-
ual) entropy is S(T = 0) = kIlng(0). In this case the ground state is degenerate.” For example,
because an electron has spin 1/2, it has two quantum states for each value of its momentum. In
practice, there is always a very small, but nonzero magnetic field due to the Earth’s magnetic field.
Hence, if we could measure the entropy of the ground state of a system of electrons directly, we
would find that S(T = 0) = 0. However, there are some complex systems for which g(0) o< V.10
We will state the third law of thermodynamics as

The entropy of a system at T = 0 is a well-defined constant. For any process that brings
a system at T =0 from one equilibrium macrostate to another, the change of entropy

AS =0.

Because the entropy can be expressed as S = fOT(C' (T")/T)dT, we conclude that the heat capacity
must go to zero as T' — 0.

Problem 4.27. Entropy of the ground state of a system of electrons

Explain why the entropy associated with the ground state of a system of N electrons would be
kN In2 in zero magnetic field. O

4.7 Connection Between Thermodynamics and Statistical
Mechanics in the Canonical Ensemble

Just as S = kIn(Q) gives the fundamental relation between statistical mechanics and thermody-
namics for given values of F, V, and N (see Table 4.9), we now determine the connection in the
canonical ensemble where T is fixed rather than E. We have seen that the statistical quantity that
enters into the calculation of the mean energy and the mean pressure is not Z, but In Z (see (4.84)
and (4.92)). We also learned in Section 2.21 that the Helmholtz free energy FF = E — T'S is the

9An energy level is said to be degenerate if there are two or more microstates with the same energy.

10A simple example of a system with a nontrivial number of ground states is the Ising antiferromagnet on the
hexagonal lattice. We will discuss this system in Problem 5.14(d). This system has a nonzero entropy at zero
temperature.
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thermodynamic potential for the variables T', V', and N. Because this set of variables corresponds
to the variables specified by the canonical ensemble, it is natural to look for a connection between
In Z and F, and we will define the latter as

F=—kTInZ| (statistical mechanics definition of the free energy) (4.102)

We now show that F as defined by (4.102) is equivalent to the thermodynamic definition
F = E —TS. This equivalence and the relation (4.102) gives the fundamental relation between
statistical mechanics and thermodynamics for given values of T', V', and N.

We write the total change in the quantity SF = —In Z as

102 107
=FEdB — fPdV, (4.103b)

where we have used (4.84) and (4.91) and the fact that F and Z depend on T (8) and V. For
simplicity, we will ignore the dependence of F' and Z on N in this chapter unless otherwise stated.
We add and subtract SdF on the right-hand side of (4.103b) to find

d(BF) = EdS + BdE — BdE — BPdV (4.104a)
= d(BE) — B(dE + PdV). (4.104b)
Hence, we can write - o
d(BF — BE) = —3(dE + PdV). (4.105)
From the thermodynamic relation dE = T'dS — PdV (for fixed N), we can rewrite (4.105) as
d(BF — BE) = —3(dE + PdV) = —3TdS = —dS/k. (4.106)
If we integrate (4.106), we find
S/k = B(E — F) + constant, (4.107)
or -
F = E — TS + constant. (4.108)

If we make the additional assumption that the free energy should equal the internal energy of the
system at 7' = 0, we can set the constant in (4.108) equal to zero, and we obtain

F=E-TS. (4.109)

Equation (4.109_) is equivalent to the thermodynamic definition of the Helmholtz free energy with
E replaced by E. In the following, we will often write E instead of E because the distinction will
be clear from the context.

In Section 2.21 we showed that the Helmholtz free energy F' is the natural thermodynamic
potential for given values of T', V', and N and that

S = —(Z—?)V’N. (4.110)
P= —(g—‘lj)T)N (4.111)

p= (g—g)m. (4.112)
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These relations still hold with F' = —kT'In Z.

We have found that if we start with the statistical mechanical relation F = —kT'InZ (see
(4.102)), we obtain the thermodynamic relation F = E — T'S (see (4.109)). It is instructive to
start with the latter and show that it implies that F = —kT'In Z. We substitute F = —91In Z/003
and the relation S = kB%(0F/93) (see (4.110)) and find

0lnZ oF
FP=FE-TS=- - Bl == . 4.11
s op ( ap )V,N ( 3)
We rewrite (4.113) as
OF OBF olnZ
F — =(—= =— . 4.114
+ﬁ(86 )V,N ( ap )V,N ap ( )
If we integrate both sides of (4.114), we find (up to a constant) that
F=—kTlhZ (4.115)

4.8 Simple Applications of the Canonical Ensemble

To gain experience with the canonical ensemble, we first consider some simple examples for which
we can do the needed sums over microstates explicitly. In all of these examples, the goal is to
calculate the partition function. The usual procedure is to then calculate the free energy using
(4.102), the entropy using (4.110), and the mean energy using (4.84). (In these simple examples,
the volume of the system will not be relevant, so we will not calculate the pressure.) In principle,
we can follow this “recipe” for any physical system, but we will find starting in Chapter 5 that
summing over the microstates to evaluate the partition function is usually a formidable task and
can be done exactly in only a few cases.

Example 4.2. Two distinguishable particles

Consider a system consisting of two distinguishable particles. Each particle can be in one of
two microstates with single particle energies 0 and A. The quantity A is called the energy gap.
The system is in equilibrium with a heat bath at temperature T. What are the thermodynamic
properties of the system?

Solution. The microstates of this two-particle system are (0,0), (0,4), (4A,0), and (A, A). The
partition function Z is given by

4
Zy =Y e P (4.116a)
s=1
=142 P2 f 288 (4.116D)
= (14e772)2, (4.116¢)

We can express Z5 in terms of Z;, the partition function for one particle:

2
Zy=) e =1+e"8 (4.117)
s=1
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By comparing the forms of (4.116¢) and (4.117), we find that
Zy =72, (4.118)

What do you expect the relation is between Zp, the partition function for N noninteracting
distinguishable particles, and Z;7

Note that if the two particles were indistinguishable, there would be three microstates if the
particles were bosons and one microstate if the particles were fermions, and the relation (4.118)
would not hold.

Because Z5 is simply related to Z;, we can consider the statistical properties of a system
consisting of one particle with Z; given by (4.117). From (4.79) we find the probability that the
system is in each of its two possible microstates is given by:

1 1

e fA e BA
P, = = ) 4.119b
2T 7 T 14efA ( )
The average energy is given by
2
_ AePA
e = ;PSGS S (4.120)
We will use a lower case symbol to denote the results for one particle.
Of course, € could also be found from the relation € = —91n Z; /98. For our example we have
Zy=1+e P2 (4.121)
and
07
—— = —Ae P8, 4.122
S = A (1122)
Hence A
0 1 07, Ae™
t=——Zj=——""=—" 4.123
TR T T 0B T 14e s (4.123)

in agreement with (4.120). The energy of N noninteracting, distinguishable particles of the same
type is given by ' = Ne.
It is easy to calculate f, the free energy per particle, from the partition function in (4.116¢).
We have
f=—kTInZ, = —kTnfl 4+ e 74| (4.124)

Because we have already calculated f and €, we can calculate s, the entropy per particle, from the
relation f = e—Ts, or s = (e— f)/T. Alternatively, we can calculate s by taking the temperature
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derivative of the free energy (see (4.110)):

5= —(g—i’i)v = kln[l +e P2 + kT%% In[1 + e =74 (4.125a)
= k[l + e PA] + kT(k_—TIQ) % (4.125b)
= kln[l + e P4 + (%) % (4.125¢)
=kIn[l +e 2] + k%. (4.125d)

The behavior of the various thermodynamic properties of this system are explored in Problem 4.47.

O

Example 4.3. The thermodynamic properties of a single one-dimensional harmonic oscillator in
equilibrium with a heat bath at temperature T'

Solution. The energy levels of a single harmonic oscillator in one dimension are given by

1
€n = (n+§)m. (n=0,1,2,...) (4.126)
The corresponding partition function is

o0 oo

Z = Z e Ahw(nt1/2) — o= fhw/2 Z e nBhw (4.127a)
n=0 n=0
= P21 Pl 72w Ly — o2 g a4, (4.127b)
where 2 = e#"_ The infinite sum in (4.127b) is a geometric series in x and can be summed using
the result that 1+ + 22+ ... =1/(1 — ) (see Appendix A). The result is
efﬁhw/Q
7, = s (4.128)
and
1
InZy = =3 fhw —In(1 - e Py, (4.129)
v
Problem 4.28. Thermodynamic properties of a system of harmonic oscillators
(a) Show that for one oscillator
1
f=ghw+ kT In(1 — e ™) (4.130)
677,(.4) —Bhw
Ezﬁw[l—l— ! ] (4.132)
2 efhw —1
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Equation (4.132) is Planck’s formula for the mean energy of an oscillator at temperature 7.
The heat capacity is discussed in Problem 4.50.

(b) Given the result (4.132) what is the mean energy of a system of N harmonic oscillators in
equilibrium with a heat bath at temperature 177

(¢) Compare your answer with the result for the energy of N harmonic oscillators calculated in
the microcanonical ensemble in Problem 4.22. Do the two ensembles give identical results? [

Equation (4.80) for Z is a sum over all the microstates of the system. Because the energies of
different microstates may be the same, we can group together microstates with the same energy
and write (4.80) as

Z= Y QE)e ", (4.133)
levels ¢

where Q(FE)) is the number of microstates with energy Fy. The sum in (4.133) is over all the energy
levels of the system, rather than over all the microstates of the system.

Example 4.4. Consider a three level single particle system with six microstates with energies 0,
€, €, €, 2¢, and 2e. What is () for this system? What is the mean energy of the system if it is in
equilibrium with a heat bath at temperature 17

Solution. In this case we have Q(0) =1, Q(e) = 3, and Q(2¢) = 2. The partition function is given
by (see (4.133))
Zy =1+ 3e P 4 2¢720¢, (4.134)

Hence, the mean energy of a single particle is given by

3ePe 4 4o 28
“T+3e B¢ + 2¢-28¢

(4.135)

€ =

What is the energy of N such particles? O

4.9 An Ideal Thermometer

The temperature of a system is an abstract quantity in part because we don’t have a direct way to
measure it. Instead, we need to measure some other quantity such as the pressure in a container
or the expansion of a metal, and then calibrate these measurements with the temperature by
assuming that the measurements change in some known way with temperature. We now discuss a
simple thermometer which gives a direct measure of the temperature. This thermometer has only
one property, its energy, and can be realized in a computer simulation.

As discussed in Section 2.4 (page 34), an ideal thermometer interacts very weakly with the
system of interest, but strongly enough to obtain an accurate measurement. Also, there needs to
be a known relation between some property of the thermometer and the temperature.

Consider a system of one particle which we will call a demon that can exchange energy with
another system (see page 17).1' Here the demon will play the role of a thermometer, and the other

1 “Demons” have a rich history in statistical mechanics. See for example, Harvey Leff and Andrew F. Rex, editors,
Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing, CRC Press (2003).
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system, which we will call “the system,” is much larger and plays the role of a heat bath. We will
use the demon to measure the temperature of the heat bath. As long as almost all of the energy
resides in the heat bath, the temperature of the heat bath will not change. The demon obeys the
following rules or algorithm:

1. Set up an initial microstate of the system with the desired total energy E and assign an
initial energy Fy to the demon. (For convenience the initial demon energy is usually set to
zero.)

2. Make a trial change in the microstate. For example, for the Einstein solid, choose a particle
at random and randomly increase or decrease its energy by one. For the Ising model, flip a
spin chosen at random.

3. Compute the change in energy of the system, AE. If AE < 0, accept the change, and increase
the energy of the demon by |AE|. If AE > 0, accept the change if the demon has enough
energy to give to the system, and reduce the demon’s energy by AE. The only constraint is
that the demon’s energy must remain greater than a lower bound which we take to be zero.
If a trial change is not accepted, the existing microstate is counted in the averages. In either
case the total energy E of the system plus the energy Eg of the demon remains constant.

4. Repeat steps 2 and 3 many times.

5. Compute the averages of the quantities of interest once the system and the demon have
reached equilibrium.

The demon can trade energy with the system as long as its energy remains greater than its lower
bound, which we have chosen to be zero. The demon is a facilitator that allows the particles (or
spins) in the system to indirectly trade energy with one another.

In Problems 4.29 and 4.31 we use the demon algorithm to determine the mean energy of the
demon and the probability that it is in a particular microstate.

Problem 4.29. The demon and the ideal classical gas

Consider a demon that exchanges energy with an ideal classical gas of N identical particles of mass
m in three dimensions. Because the energy of a particle in an ideal gas depends only on its speed,
the positions of the particles are irrelevant in this case. The demon chooses a particle at random
and changes its velocity in a particular direction by an amount, §, chosen at random between —d,,
and ,,. The change in energy of the system is AE = 1[(v 4 6)* — v?]; we have chosen units so
that m = 1. The parameter d,, is arbitrary. The program TemperatureMeasurementIdealGas
implements the demon algorithm for an ideal classical gas in d dimensions. For simplicity, the
program initially assigns each particle in the gas the same initial velocity v in the a-direction; |v]|
is chosen so that the initial energy of the system is E. The initial demon energy is set equal to
Zero.

(a) Before you do the simulation, sketch the energy-dependence of the probability p(E;)AE, that
the demon has an energy between E; and Eg + AEy. Is p(E4) an increasing or decreasing
function of Ey or does it have a maximum at some value of Fy?
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(b) Choose d = 3 and N = 40 and E = 40 so that E/N = 1. Determine Fg4, the mean energy
of the demon, and E/N, the mean energy per particle of the system after the demon and the
system have reached equilibrium. (Use the Zero button.) Then choose other combinations of
N and E and determine the relation between Eq and E/N.

(¢) We know that the mean energy of an ideal classical gas in three dimensions is equal to 3NET'/2
(see (4.65)), where T is the temperature of the system. Use this relation and the values of
E/N that you found in part (b) to estimate the temperature of the gas. What is the relation
of the temperature that you found in this way to Eq? (Use units such that k = 1.)

(d) Run for a sufficient number of trials so that the form of p(Eq) is well defined, and verify
the exponential form of p(Eq).'? Compare your results for the temperature that you found in
part (c) with value of 1/ that you determined from the exponential fit of p(Eq). Then assume
that 8 = 1/kT and compare the values of the temperature that you obtained.

(e) We will show in Problem 4.30 that Eyq = kT given the exponential form of the probability
density p(Eq) that you found in part (d) and the fact that Eq is a continuous variable. How
well do your simulation results for Fyq agree with this prediction?

(f) How do your results change for an ideal gas in two and three dimensions?

(g) Explain why the form of p(Eq) is given by the Boltzmann distribution. What property (prop-
erties) of the demon make it an ideal thermometer?

(h) Compare the initial mean velocity of the particles in the system to the mean value after equilib-
rium has been established. What is form of the distribution of the velocities in equilibrium? [

Problem 4.30. The temperature dependence of the mean demon energy: Continuous case

A demon exchanges energy with an ideal classical gas of N particles in three dimensions (see
Problem 4.29). What is the mean energy of the demon?

In this case the demon energy is a continuous variable. Hence, we can analytically determine
the relation between the mean demon energy and the temperature:
= _ Jo Pae P dEq

d =
Jo e FPadE,

(4.136)

(a) Explain why the relation_(4.136) for the demon energy is reasonable and determine the tem-
perature dependence of Ey.

(b) Would this temperature dependence be different if the gas is in one or two dimensions? Would
the temperature dependence change if the particles in the gas interacted with one another? [

Problem 4.31. The demon and the Einstein solid

Consider a demon that exchanges energy with an Einstein solid of N particles. The demon selects
a particle at random and randomly changes its energy by 41 consistent with the constraint that

12Choose Data Tool under the Views menu and click OK. Select the Fit Box and then select Fit Builder. Add
two fit parameters, say a and b, and then add the expression a*exp(-b*x).
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Eq > 0. In this case the energy of each particle in the system also must remain nonnegative.
Why? If a trial change is not accepted, the existing microstate is counted in all averages. Use the
program TemperatureMeasurementEinsteinSolid to do the simulations.

(a) Choose N =40 and E = 200. What is the mean energy of the demon after equilibrium between
the demon and the system has been established? Compare the values of Eq and E /N. Fix
N =40 and change E. How does E4 depend on E/N?

(b) Compute the probability P(FEq) for various values of F and N. Fit your results to the form
In P(E4q) = —(Eq4 + constant, where § is a parameter. Is § simply related to the mean demon
energy?

(¢) Explain why the form of P(Eq) is given by the Boltzmann distribution. What property of the
demon appears to be universal? O

Problem 4.32. The temperature dependence of the mean demon energy for an Einstein solid

A demon exchanges energy with an Einstein solid of N particles (see Problem 4.31).

(a) Explain why the energy of the demon is restricted to integer values.

(b) Explain why the demon’s mean energy is given by

X pehn
By = om0 (4.137)

ano eiﬁn

(c) Do the sums in (4.137) to determine the temperature dependence of Eq. (It is necessary to
evaluate only the sum in the denominator of (4.137). The numerator can be determined by
an appropriate derivative of the result for the denominator. See Example 4.3.)

(d) Why is the temperature dependence of Eq4 different for an ideal gas and an Einstein solid?

(e) *In what limit does the temperature dependence become the same? O

4.10 Simulation of the Microcanonical Ensemble

How can we implement the microcanonical ensemble on a computer? One way to do so for a
classical system of particles is to use the method of molecular dynamics (see Section 1.4) which is
based on the numerical solution of Newton’s equations of motion. We first choose initial conditions
for the positions and velocities of each particle that are consistent with the desired values of E, V',
and N. The numerical solution of Newton’s equations generates a trajectory in 6 N-dimensional
phase space (for a system in three spatial dimensions). Each point on the trajectory represents a
microstate of the microcanonical ensemble with the additional condition that the momentum of
the center of mass is fixed. The averages over the phase space trajectory represent a time average.

To do such a simulation we need to be careful to choose a representative initial condition. It
could happen that most of the microstates consistent with the desired values of E, V and N are not
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easy to reach from a specific microstate, and hence the system might spend a long time in similar
non-representative microstates. Because molecular dynamics simulates systems for physical times
that are very short (the longest time we can simulate is ~ 107%s), the system might not reach
equilibrium within a reasonable amount of computer time if we do not choose the initial microstate
properly.

Our assumption that a molecular dynamics simulation generates microstates consistent with
the microcanonical ensemble is valid as long as a representative sample of the accessible microstates
can be reached during the duration of the simulation. Such a system is said to be ergodic.

As we will justify further in Section 6.2.1, we can identify the temperature of a system of
interacting classical particles with the kinetic energy per particle using the relation (4.65). (For
the ideal gas the total energy is the kinetic energy.) If we were to do a molecular dynamics
simulation, we would find that the total energy is approximately constant (it would be a constant
if we could numerically solve the equations of motion exactly), and the kinetic energy and hence
the temperature fluctuates as is expected for the microcanonical ensemble. The mean temperature
of the system becomes well defined if the system is in equilibrium, the number of particles in the
system is sufficiently large, and the simulation is done for a sufficiently long time.

What if we wish to simulate a system at fixed total energy for which Newton’s equations of
motion is not applicable? For example, there is no dynamics for the Einstein solid in which the
particles have only integer values of the energy. Another general way of generating representative
microstates is to use a Monte Carlo method. As an example, the relevant variables for the Einstein
solid are the quantum numbers of each particle such that their sum equals the desired total energy
E. Given a set of quantum numbers, how do we generate another set of unbiased quantum numbers
with the same energy? Because we want to generate a representative sample of the accessible
microstates, we need to make all changes at random. One possibility is to choose two particles at
random and make trial changes in their energy by +1 such that the total energy is unchanged.

A more interesting example is the Ising model in which the spins interact with their nearest
neighbors with an energy +.J if the spins are parallel and energy —.J if the spins are antiparallel
(see Section 1.9.3). We will discuss the Ising model in more detail in Chapter 5. Here it is sufficient
to understand that the individual spins interact with one another.

The condition that the total energy be fixed makes sampling the accessible microstates of the
Ising model difficult. If we choose a spin at random and flip it, the change will frequently change
the energy of the system. We can circumvent this difficulty by relaxing the condition that the
total energy be fixed by adding to the system of N particles an extra degree of freedom called the
demon, as we discussed in Section 4.9. The total energy of the demon plus the original system is
fixed. Because the demon is one particle out of N + 1, the fluctuations in the energy of the original
system are order 1/N, which goes to zero as N — co. Hence, the demon simulation can be viewed
either as a means of illustrating an ideal thermometer by focusing on the demon as a system in
the canonical ensemble or as a way of simulating the microcanonical ensemble by focusing on the
particles in the system interacting with the demon.
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4.11 Simulation of the Canonical Ensemble

Suppose that we wish to simulate a system that is in equilibrium with a heat bath at temperature
T. One way to do so is to start with an arbitrary microstate of energy Es and weight it by its
relative probability e =?Fs. For example, we could generate another microstate of an Einstein solid
by choosing a particle at random and changing its energy by +1 at random. If we repeated this
process M times, the mean energy of the system could be estimated by

= Ziw:l Ege PP
B(T) = =5 5
ZSZI € °

where F is the energy of microstate s and the sum is over the M microstates that have been
generated at random. However, this procedure would be very inefficient because the M states would
include many high energy states whose weight in averages such as (4.138) would be exponentially
small.

, (4.138)

One way to make the sampling procedure more efficient is to generate microstates with proba-
bilities proportional to their weight, that is, proportional to e “#F+. In this way we would generate
microstates with the highest probability. Such a sampling procedure is known as importance sam-
pling. The simplest and most common method of importance sampling in statistical mechanics is
known as the Metropolis algorithm. This algorithm is based on the fact that the ratio of the prob-
ability that the system is in microstate j with energy E; to the probability of being in microstate ¢
with energy E; is p;/p; = e PE—E) = ¢=PAE where AE = E; — E;. We may interpret this ratio
as the probability of a transition from microstate i to microstate j. If AE < 0, the ratio e 7#2F is
greater than one, and the probability is set to one. The Metropolis algorithm can be summarized
as follows:!3

1. Choose an initial microstate, for example, random initial energies for each particle in an
Einstein solid or random positions in a system of particles interacting via the Lennard-Jones
potential. Also fix the desired temperature T of the system.

2. Make a trial change in the microstate. For the Einstein solid, choose a particle at random
and randomly change its energy by £1. For a system of interacting particles, change the
position of a particle by a small random amount. Compute the change in energy of the
system, AF, corresponding to this change. If AF < 0, then accept the change. If AE > 0,
accept the change with probability w = e #2F. To do so, generate a random number r
uniformly distributed in the unit interval. If » < w, accept the new microstate; otherwise,
retain the previous microstate.

3. Repeat step 2 many times.
4. Compute the averages of the quantities of interest after the system has reached equilibrium.

Problem 4.33. Simulation of the Einstein solid in equilibrium with a heat bath

Use the Metropolis algorithm to simulate an Einstein solid of N particles at a temperature T'.
The program at TemperatureMeasurementEinsteinSolid implements the Metropolis algorithm

3 The Metropolis algorithm is justified in the paper by Tobochnik and Gould (see the references at the end of
this chapter).
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by choosing a particle at random and randomly increasing or decreasing its energy by one unit. If
the energy is decreased, the change is accepted. If the energy is increased, the program generates
a number 7 at random in the unit interval and accepts the change if r < e=”, where 8 = 1/T. (As
usual, we choose units such that Boltzmann’s constant k = 1.) If a trial change is not accepted,
the existing microstate is counted in all averages. These process is repeated many times until the
various averages become well defined.

(a) Choose N = 20 and 3 = 1. Does the energy of the system eventually reach a well defined
average? If so, vary 3 and determine E(T).

(b) Compare your results to the analytical results found in Example 4.3. O

We will consider many other applications of the Metropolis algorithm in later chapters.

4.12 Grand Canonical Ensemble (Fixed T, V, and pu)

In Section 4.6 we derived the Boltzmann probability distribution for a system in equilibrium with
a heat bath at temperature T'. We now generalize the heat bath to a reservoir that can exchange
particles as well as energy and find the probability distribution for a system in equilibrium with
the reservoir at temperature 1" and chemical potential p. In this case the role of the reservoir is to
fix the chemical potential as well as the temperature. Hence the mean number of particles as well
as the mean energy are determined. This ensemble is known as the grand canonical ensemble.

As before, the composite system is isolated with total energy E, total volume V', and total
number of particles N. The probability that the (sub)system is in microstate s with energy Ej
and Ny particles is given by (see (4.75))

11X Q(E— E,, N - N,)

P = .
Yo SW(E - Es, N — Ny)

(4.139)

The difference between (4.75) and (4.139) is that we have allowed both the energy and the number
of particles of the system of interest to vary. As before, we take the logarithm of both sides of
(4.139) and exploit the fact that £, < E and Ny < N. We have

8anb(Eb) 8anb(Nb)

OB )Eb:E a NS(TM)N,D:N7 (4.140)

In P, ~ constant — ES(

where Fy, = E — E5 and N, = N — N;. If we substitute 5 = 90IlnQy,/IF (see (4.78)) and
Bu=—-0InQ,/ON (see (2.120)), we obtain

Es  pNs
InP, = - = : 4.141
n constant T + T ( )
or
1
P, = Z—e*ﬁ’(ErﬂNs) . (Gibbs distribution) (4.142)
G
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Equation (4.142) is the Gibbs probability distribution for a variable number of particles. This
distribution gives the probability that the system is in microstate s with energy Es and Ny particles.
The grand partition function Zg in (4.142) is found from the normalization condition

> Po=1 (4.143)

Hence, we obtain

Zg = Z e PBamnNe) | (grand partition function) (4.144)

In analogy to the relations we found in the canonical ensemble, we expect that there is a
simple relation between the Landau potential defined in (2.163) and the grand partition function.
Because the derivation of this relation proceeds as in Sec. 4.6, we simply give the relation:

Q=—kTlnZg| (4.145)

Example 4.5. Absorption of atoms on surface sites

Consider a surface with sites that can absorb atoms. Each site can be empty or have at most
one absorbed atom. The energy of the site is zero if no atom is present and e is one atom is
present. The occupancy of the sites is not correlated. What is the mean number of atoms that
are absorbed assuming that the surface iis in equilibrium with a reservoir at temperature 7' and
chemical potential p?

Solution. Because the sites are not correlated, we consider a system of one site. The system has
two states with energy 0 and e, and its grand partition function is given by

Zg=1+eBlm), (4.146)

The probability that one atom is absorbed is

e—Ble—p) 1 147
b= T w1 (4.147)
The mean number of atoms absorbed is
_ 1

Suppose that we know that 7 = 0.6 at T = 3 (in units such that £ = 1). What is the chemical
potential p in this case? Choose € = 1 for simplicity.

We solve for p from (4.148) and find that

2 3
,u:e—len(ﬁ_l—l)zl—?)lng:1—|—31n§z2.22. (4.149)
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4.13 *Entropy is not a Measure of Disorder

Many texts and articles for the scientifically literate refer to entropy as a measure of “disorder” or
“randomness.” This interpretation is justified by the relation, S = k1In 2. The argument is that an
increase in the disorder in a system corresponds to an increase in €2. Sometimes a reference is made
to a situation such as the tendency of students’ rooms to become messy. There are two problems
with this interpretation — it adds nothing to our understanding of entropy and it is inconsistent
with our naive understanding of structural disorder.

We have already discussed the interpretation of the entropy as a measure of the uncertainty
or lack of information. Thus, we already have a precise definition of entropy and can describe a
student’s messy room as having a high entropy because of our lack of information about the location
of a particular paper or article of clothing. We could define disorder as lack of information, but
such a definition does not help us to understand entropy any better because it does not provide
an independent understanding of disorder.

The other problem with introducing the term disorder to describe entropy is that it can lead
to incorrect conclusions. In the following we will describe two examples where the crystalline phase
of a given material has a higher entropy than the liquid phase. Yet you would probably agree that
a crystal is more ordered than a liquid. So how can a crystal have a higher entropy? The following
analogy might be helpful.

Suppose that you are going on a short trip and you need to pack your suitcase with only a
few articles.' In this case the volume of the suitcase is much greater than the total volume of
the articles you wish to pack, and you would probably just randomly throw the articles into the
suitcase. Placing the articles in an ordered arrangement would require extra time and the ordered
arrangement would probably be lost during your trip. In statistical mechanics terms we say that
there are many more ways in which the suitcase can be packed in a disordered arrangement than
the ordered one. Hence, we could conclude that the disordered macrostate has a higher entropy
than the ordered macrostate. This low density case is consistent with the naive association of
entropy and disorder.

Now suppose that you are going on a long trip and you need to pack many articles in the
same suitcase, that is, the total volume of the articles to be packed is comparable to the volume
of the suitcase. In this high density case you know that randomly throwing the articles into the
suitcase won’t allow you to shut the suitcase. Such a configuration is incompatible with the volume
constraints of the suitcase. If you randomly throw the articles in the suitcase many times, you
would find only a few configurations that would allow you to close the suitcase. In contrast, if
you pack the articles in a neat and ordered arrangement, the suitcase can be closed. Also there
are many such configurations that would satisfy the constraints. We conclude that the number
of ordered arrangements of the articles in the suitcase is greater than the number of disordered
arrangements. Therefore an ordered arrangement in the high density suitcase has a higher entropy
than a structurally disordered state. The association of disorder with entropy is not helpful here.

The suitcase analogy is an example of an entropy-driven phase transition from a low to a high
density macrostate because energy did not enter into our considerations at all. Another example
of system that exhibits an entropy-driven transition is a system of hard disks. In this seemingly

M This example is due to Laird (see the references).
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simple model the interaction between two particles is given by

u(r) = {OO (r<o) (4.150)

0 (r>o0),

where o represents the diameter of the hard disks. For this model, only non-overlapping configu-
rations are allowed and so the potential energy is zero. Hence, the internal energy is solely kinetic
and the associated contribution of the energy to the free energy is the ideal gas part which depends
only on the temperature and the density. Hence, the difference in the free energy AF = AE—-TAS
between a hard sphere crystal and a hard sphere fluid at the same density and temperature is equal
to —TAS.

In the following problem we will do an exploratory simulation of a system of hard disks that
suggests that there is a transition from a fluid at low density to a crystal at high density. (We
use the term fluid when there is no distinction between a gas and a liquid.) That is, at some
density AF must become negative, which can occur only if AS = Scrystal — Stuid is positive. We
conclude that at high density the entropy of the crystal must be greater than that of a fluid at
equal temperature and density for a fluid-solid (freezing) transition to exist.

Problem 4.34. Simulation of hard disks

The dynamics of a system of hard disks are straightforward in principle because the particles move
in straight lines in between collisions. The program HardDisksMD finds when the next two particles
are going to collide and moves the particles accordingly.

(a) Run the simulation for the default parameters and record the density and the results for
PA/NKT and the temperature. Is the temperature a useful quantity for hard disks? Does it
fluctuate during the simulation. If not why not? Does the pressure P fluctuate?

(b) Compute PA/NKT as a function of density for a fixed number of particles. Is there any
evidence of a phase transition where the slope of the pressure with respect to density changes
abruptly? O

4.14 Supplementary Notes

4.14.1 The volume of a hypersphere

In the following we derive the expression (4.46) for the volume of a hypersphere of n dimensions.
As in (4.45) the volume is given formally by

Va(R) = dxidze - -dx,,. (4.151)

/;%+x§+---+z?l<R2
Because V;,(R) < R"™ for n = 2 and 3, we expect that V,, is proportional to R™. Hence, we write

V, = C,R", (4.152)
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where C), is the unknown constant of proportionality that we wish to find. We rewrite the volume
element dV,, = dx1 dzs - - - dx,, as

dV,, = dxy dxy ---dx, = S,(R)dR = nC, R" dR, (4.153)

where S, = nC,R"! is the surface area of the hypersphere. For example, for n = 3 we have
dV3 = 4rR? dR and S3 = 47 R?. To find C,, for general n, consider the identity (see Appendix A)

Inz/ dwl---/ dxne—@?*"”i):{/ dxe—ﬂ = /2, (4.154)

— 00 — 0o — 00

The left-hand side of (4.154) can be written as

I, :/ dxy - / dzy, e~ @ittan) :/ dR S, (R) e (4.155a)
—00 —0o0 0
- nC’n/ dRR" e (4.155b)
0

We can relate the integral in (4.155b) to the Gamma function I'(n) defined by the relation
I'(n) :/ dez"te®. (4.156)
0

The relation (4.156) holds for n > —1 and whether or not n is an integer. We make the change of
variables u = R? so that

1 e 1
I, = §nCn/ duu™/? e = inCn ['(n/2). (4.157)
0

A comparison of (4.157) with (4.154) yields the desired relation

L 4.158
") T 2T (E) (4.158)

It follows that
Va(R) = —R". (4.159)

4.14.2 Fluctuations in the canonical ensemble

To gain more insight into the spread of energies that are actually observed in the canonical en-
semble, we determine the probability p(E)AFE that a system in equilibrium with a heat bath at
temperature 1" has energy F in the range E to E+ AFE. In most macroscopic systems the number
of microstates with the same energy is large. In such a case the probability that the system is in
any of the microstates with energy E can be written as

Q(E)e PE
S Q(E)e=PE’

levels

(4.160)
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where Q(F) is the number of microstates with energy E. As in (4.133) the sum in the denominator
in (4.160) is over the different energy levels of the system. In the thermodynamic limit N, V' — oo,
the spacing between consecutive energy levels becomes very small and we can regard F as a
continuous variable. We write p(E)dE for the probability that the system in the range E and
E+dFE and let g(F) dE be the number of microstates between E and E + dE. (The function g(E)
is the density of states and is the same function discussed in Section 4.3.) Hence, we can rewrite
(4.160) as

g(E)e PEAE

p(E)dE = T o(E)P5dE

(4.161)

As we did on page 138 we can find an approximate form of p(E) by expanding p(£) about
E = E, the most probable value of E. To do so, we evaluate the derivatives d(lnp)/0F and
0% Inp/OE? using (4.161):

dlnp _ (Olng B
( OF )E:E N ( OF )E:E —6=0, (4.162)
and
& lInp 0%Ing
( OF? )E:E _( OE?2 )E:E' (4.163)
We have 1 . y
( OE? )E:E B aE( OE )E:E OE" (4.164)
Finally, we obtain
o5 = T 5E — (4.165)

0E ~  kT?20E  KT2Cy’

We can use these results to expand Inp(E) about E = E through second order in (F — E)2.
The result is

- E—E)?
lnp(E) =lnp(E) — w . (4.166)
or
p(E) = p(E)e(E-E)/2KT*Cy (4.167)

We see that (4.167) is the standard form of a Gaussian distribution (3.118) with E = E and
02 = kT?Cy as expected.

Vocabulary

composite system, subsystem
equal a priori probabilities
microcanonical ensemble, canonical ensemble, grand canonical ensemble

Boltzmann distribution, Gibbs distribution
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entropy .S, Helmholtz free energy F', Gibbs free energy GG, Landau potential )

demon algorithm, Metropolis algorithm

Additional Problems

Problem 4.35. Statistical nature of the Clausius statement of the second law

Discuss the statistical nature of the Clausius statement of the second law that energy cannot go
spontaneously from a colder to a hotter body. Under what conditions is the statement applicable?
In what sense is this statement incorrect? O

Problem 4.36. Fundamental nature of the second law

Given our discussion of the second law of thermodynamics from both the macroscopic and micro-
scopic points of view, discuss the following quote:

“The law that entropy always increases, the Second Law of Thermodynamics, holds
... the supreme position among the laws of Nature. If someone points out to you that
your pet theory of the universe is in disagreement with Maxwell’s equations, then so
much the worse for Maxwell’s equations. .. But if your theory is found to be against
the second law of thermodynamics, I can give you no hope; there is nothing for it
but to collapse in deepest humiliation.” Arthur Stanley Eddington, The Nature of the
Physical World. O

Problem 4.37. Another two subsystems

Consider an isolated composite system consisting of subsystems A and B that can exchange energy
with each other. Subsystem A consists of three noninteracting spins, each having magnetic moment
1. Subsystem B consists of two noninteracting spins each with a magnetic moment 2u. A magnetic
field B is applied to both systems. (This problem is adapted from Reif.)

(a) Suppose that the total energy is Fioy = —3uB. What are the accessible microstates of the
composite system? What is the probability P(M) that system A has magnetic moment M?

(b) Suppose that subsystems A and B are initially separated from each other and that the magnetic
moment of A is —3u and the magnetic moment of B is +4u. The systems are then placed in
thermal contact with one another and are allowed to exchange energy. What is the probability
P(M) that the magnetic moment of system A has one of its possible values M? What is the
mean value of the magnetic moment of system A? O

Problem 4.38. Two magnetic systems in thermal contact

Consider two isolated systems of noninteracting spins with N4 = 4 and Ng = 16. Their initial
energies are K4 = —2uB and Ep = —2ubB.

(a) What is the total number of microstates available to the composite system?
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(b) If the two systems are now allowed to exchange energy with one another, what is the probability
that system A has energy F47

(c) What is the mean value of E4 and its relative fluctuations of E4? Calculate the analogous
quantities for system B.

(d) What is the most probable macrostate for the composite system? O

*Problem 4.39. An Einstein solid and a magnetic system

Suppose that system A is an Einstein solid with Ny = 8 particles and system B consists of
Np = 8 noninteracting spins that can be either up or down. The external magnetic field is such
that B = 1/2. The magnitude of ;1B has been chosen so that the changes in the energy of system
B are the same as system A, that is, AE = +1. The two systems are initially isolated and the
initial energies are F4 = 4 and Ep = —1. What is the initial entropy of the composite system?
Remove the internal constraint and allow the two systems to exchange energy. Determine the
probability Pa(FE ) that system A has energy E4, the mean and variance of the energy of each
subsystem, the most probable energies E4 and Ep, and the probability that energy goes from
system A to system B and from system B to system A. Which system is hotter initially? What is
the change in the total entropy of the system? O

*Problem 4.40. Number of states of the one-dimensional Ising model

We can determine the number of microstates Q(E, N) of the one-dimensional Ising model for small
N by counting on our fingers. For example, it is easy to verify that Q(—2,2) = 2, Q(0,2) = 2,
0(-3,3) = 2, and Q(1,3) = 6 for toroidal boundary conditions where the last spin is a neighbor
of the first spin. The general expression for Q(E, N) for the one-dimensional Ising model for even
N in the absence of an external magnetic field is

N N!
Q(E,N)=2 =2—0 ;1 =0,2,4,....,N 4.168
e =2(Y) =2y =024 (1.168)
where i = (E+N)/2 is the number of pairs of nearest neighbor spins pointing in opposite directions.

The energy E' is measured in units of J so F is an integer.

(a) Verify that (4.168) gives the correct answers for N = 2 and 4.
(b) Use the result (4.168) to calculate the free energy for N = 2 and 4.

(c) Derive (4.168) by considering the number of ways that ¢ pairs of antiparallel spins can be
placed on a lattice. We will discuss the Ising model in more detail in Chapter 5. O

Problem 4.41. Partition function of two independent systems

Show that the partition function Zap of two independent distinguishable systems A and B both
in equilibrium with a heat bath at temperature T' equals the product of the partition functions of

the separate systems:
ZAB = 2ZAZB. (4.169)

O
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Problem 4.42. A simple density of states

Suppose that the number of microstates between energy F and E + AFE of an isolated system of
N particles in a volume V is given by

N2g13N/2
GgB)AE =V —bN)¥ [E+ =] A

E 4.170
% , (4.170)

where a, b, and ¢ are constants.

(
(

a) Determine the entropy of the system as a function of £, V, and N.

b) Determine the temperature T" as a function of E, V', and V.

)
)
(c) Determine the energy in terms of 7', V, and N.
(d) What is the pressure as a function of T and p = N/V? O

Problem 4.43. Derivation of the ideal classical gas equations of state

Discuss the assumptions that were needed to derive the ideal classical gas equations of state, (4.65)
and (4.67). O

Problem 4.44. Qualitative behavior of the density of states

Assume that the density of states g(E) = E3N /2 for an ideal classical gas in three dimensions. Plot
g(E),e PP and the product g(E)e #F versus E for N = 6 and 3 = 1. What is the qualitative
behavior of the three functions? Show that the product g(E)e™?F has a maximum at E = 3N/(23).
Compare this value to the mean value of E given by

— [T Eg(B)e PEdE

= fooo o(E)ePEdE " (4.171)
O
Problem 4.45. A simple partition function
The partition function of a hypothetical system is given by
InZ = aT*V, (4.172)
where a is a constant. Evaluate the mean energy E, the pressure P, and the entropy S. O

Problem 4.46. An analogy for the heat capacity

The following analogy might be useful for understanding the temperature dependence of the heat
capacity of a two state system.

(a) Suppose that you walk into a store with a few dollars in your pocket, and all the items to
purchase cost over $100. Clearly, you wouldn’t be able to buy anything. Would your ability
to make a purchase change if somebody gave you an extra dollar?

(b) Now assume you walked into the same store after winning the lottery. Would your ability to
make a purchase change if somebody gave you an extra dollar?
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(¢) How much money should you have in your pocket so that an extra dollar would make a
difference?

(d) What is the analogy to the temperature-dependence of the heat capacity of a two state system?
O

Problem 4.47. Qualitative temperature dependence of a two state system

Consider a system of N noninteracting, distinguishable particles each of which can be in single
particle microstates with energy 0 and A (see Example 4.2). The system is in equilibrium with a
heat bath at temperature 7. Answer parts (a)—(c) without doing any explicit calculations.

(a) Sketch the temperature-dependence of the probability that a given particle is in the ground
state. Then do the same for the probability that the particle is in the excited state. Discuss
the limiting behavior of the probabilities for low and high temperatures. What does high and
low temperature mean in this case?

(b) Sketch the T-dependence of the mean energy E(T') and give a simple argument for its behavior.

(¢) From your sketch of F(T') sketch the T-dependence of the heat capacity C'(T') and describe its
qualitative behavior. Give a simple physical argument why C has a maximum and estimate
the temperature at which the maximum occurs.

(d) Calculate C(T) explicitly and verify that its behavior is consistent with the qualitative features
illustrated in your sketch. The maximum in the heat capacity of a two state system is sometimes
called the Schottky anomaly for historical reasons, but the characterization of this behavior as
an anomaly is a misnomer because many systems in nature behave as two state systems. [

Problem 4.48. Qualitative behavior of the heat capacity for a simple system

Consider a system of N noninteracting, distinguishable particles. FEach particle can be in one
of three states with energies 0, A, and 10A. Without doing an explicit calculation, sketch the
temperature dependence of the heat capacity. O

Problem 4.49. Mean energy of a two state system

Consider a system of one particle in equilibrium with a heat bath. The particle has two microstates
of energy e; = 0 and e = A. Find the probabilities p; and ps when the mean energy of the system
is 0.2A, 0.4A, 0.5A, 0.6A, and A, respectively. What are the corresponding temperatures? (Hint:
Write the mean energy as A and express your answers in terms of z.) O

Problem 4.50. One-dimensional harmonic oscillators in equilibrium with a heat bath

(a) Calculate the specific heat (the heat capacity per oscillator) of a system of N one-dimensional
harmonic oscillators (see Example 4.3).

(b) Plot the T-dependence of the mean energy per particle E/N and the specific heat ¢. Show that
E — ET at high temperatures for which kT > hw. This result corresponds to the classical
limit and will be shown in Section 6.2.1 to be an example of the equipartition theorem. In this
limit the energy kT is large in comparison to hw, the separation between energy levels. Hint:
expand the exponential function in (4.132).
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®

®

Figure 4.9: The two particles considered in Problem 4.52. The two distinguishable particles can
each be in one of the two boxes. The energy of the system depends on which box the particles
occupy.

(c) Show that at low temperatures for which w > kT', E/N = hw(% +e~ ™). What is the value
of the heat capacity? Why is the latter so much smaller than it is in the high temperature
limit? Why is this behavior different from that of a two state system?

(d) Verify that S — 0 as T — 0 in agreement with the third law of thermodynamics, and that at
high T', S — kN In(kT/hw). The latter result implies that the effective number of microstates
for which the probability is nonzero is proportional to NeF7/m. |

Problem 4.51. The compressibility and fluctuations

We have found that the constant volume heat capacity is related to the variance of the energy
fluctuations in the canonical ensemble (see (4.88)). The isothermal compressibility is defined as

10V
=—=(==) . 4.173

TV (ap )T (4.173)
Explain why x can be interpreted as a linear response. In analogy to the relation of Cy to the
energy fluctuations, what type of fluctuations do you think are related to x at fixed T, P, and
N? O

Problem 4.52. Consider the system illustrated in Figure 4.9. The system consists of two dis-
tinguishable particles, each of which can be in either of two boxes. The system is in thermal
equilibrium with a heat bath at temperate T'. Assume that the energy of a particle is zero if it is
in the left box and r if it is in the right box. There is also a correlation energy term that increases
the energy by A if the two particles are in the same box.

(a) Enumerate the 22 = 4 microstates and their corresponding energy.

(b) Calculate the partition function Z for arbitrary values of  and A and use your result to find
the mean energy.

(c) What is the probability that the system is in a particular microstate?

(d) Suppose that » =1 and A = 15. Sketch the qualitative behavior of the heat capacity C as a
function of T O

Problem 4.53. Grand partition function of a simple system

Consider a system in equilibrium with a heat bath at temperature T and a particle reservoir
at chemical potential p. The system has a minimum of one particle and a maximum of four



CHAPTER 4. STATISTICAL MECHANICS 229

distinguishable particles. The particles in the system do not interact and can be in one of two
states with energies zero or A. Determine the (grand) partition function of the system. O

Problem 4.54. Constant pressure ensemble

In the text we derived the form of the probability distribution for a system with fixed T', V', and N
(the canonical ensemble) and fixed T, V', and p (the grand canonical ensemble). What is the form
of the probability distribution for an equilibrium system with fixed 7', P, and N7 This ensemble
has no generally accepted name and is not particularly useful for calculations. However, it is useful
for doing simulations at a given pressure rather than for a given volume. O

Problem 4.55. Alternative derivation of the Boltzmann distribution

Consider a system with a given mean energy E and a normalized probability distribution Py, where
P is the probability that the system is in microstate s with energy F,. Show that the Boltzmann
distribution maximizes the uncertainty or missing information given the constraints that P is
normalized and the mean energy is specified (see Section 3.11.1). This derivation does not yield
a physical interpretation of the parameter 3. How would you determine 3 in terms of the known
constant E? O

Problem 4.56. Demonstration of an entropy-driven transition

The following demonstration illustrates an entropy-driven transition. Get a bag of M & Ms or
similar disk-shaped candy. Ball bearings work better, but they are not as tasty. You will also need
a flat bottom glass dish (preferably square) that fits on an overhead projector.

Place the glass dish on the overhead projector and add a few of the candies. Shake the
dish gently from side to side to simulate the effects of temperature. You should observe a two-
dimensional model of a gas. Gradually add more candies while continuing to shake the dish. As
the density is increased further, you will begin to notice clusters of hexagonal crystals.

(a) At what density do large clusters of hexagonal crystals begin to appear?
(b) Do these clusters disappear if you shake the dish faster?

(¢) Is energy conserved in this system? Do the particles move if you do not shake the dish?

(d) Compare the behavior of this system (an example of granular matter) to the behavior of a
usual gas or liquid. O
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