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We introduce the basic concepts of probability and apply them to simple physical systems and
everyday life. We will discuss the universal nature of the central limit theorem and the Gaussian
distribution for the sum of a large number of random variables. Because of the importance of
probability in many contexts, our discussion goes beyond what we will need for the applications
of statistical mechanics that we will discuss in later chapters.

3.1 Probability in Everyday Life

One of our goals, which we will consider in Chapter 4 and subsequent chapters, is to relate the
behavior of various macroscopic quantities to the underlying microscopic behavior of the individual
atoms or other constituents. To do so, we need to introduce some ideas from probability.

We all use ideas of probability in everyday life. For example, every morning many of us decide
what to wear based on the probability of rain. We cross streets knowing that the probability of
being hit by a car is small. You can make a rough estimate of the probability of being hit by a
car. It must be less than one in a thousand, because you have crossed streets thousands of times
and hopefully you have not been hit. You might be hit tomorrow, or you might have been hit
the first time you tried to cross a street. These comments illustrate that we have some intuitive
sense of probability, and because it is a useful concept for survival, we know how to estimate it.
As expressed by Laplace (1819),

“Probability theory is nothing but common sense reduced to calculation.”

Another interesting thought is due to Maxwell (1850): “The true logic of this world is the calculus
of probabilities ...” That is, probability is a natural language for describing many real world
phenomena.

However, our intuition only takes us so far. Consider airplane travel. Is it safe to fly? Suppose
that there is one chance in five million of a plane crashing on a given flight and that there are
about 50,000 flights a day. Then every 100 days or so there would be a reasonable likelihood of
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a plane crash somewhere in the world. This estimate is in rough accord with what we know. For
a given flight, your chances of crashing are approximately one part in 5 x 10°, and if you fly ten
times a year for 100 years, it seems that flying is not too much of a risk. Suppose that instead of
living 100 years, you could live 50,000 years. In this case you would take 500,000 flights, and it
would be much more risky to fly if you wished to live your full 50,000 years. Although this last
statement seems reasonable, can you explain why?

Much of the motivation for the mathematical formulation of probability arose from the profi-
ciency of professional gamblers in estimating betting odds and their desire to have more quantitative
measures of success. Although games of chance have been played since history has been recorded,
the first steps toward a mathematical formulation of games of chance began in the middle of the
17th century. Some of the important contributors over the following 150 years include Pascal,
Fermat, Descartes, Leibnitz, Newton, Bernoulli, and Laplace, names that are probably familiar to
you.

Given the long history of games of chance and the interest in estimating probability in a variety
of contexts, it is remarkable that the theory of probability took so long to develop. One reason
is that the idea of probability is subtle and is capable of many interpretations. An understanding
of probability is elusive due in part to the fact that the probably depends on the status of the
information that we have (a fact well known to poker players). Although the rules of probability
are defined by simple mathematical rules, an understanding of probability is greatly aided by
experience with real data and concrete problems. To test your current understanding of probability,
solve Problems 3.1-3.6 before reading the rest of this chapter. Then in Problem 3.7 formulate the
laws of probability based on your solutions to these problems.

Problem 3.1. Marbles in a jar

A jar contains 2 orange, 5 blue, 3 red, and 4 yellow marbles. A marble is drawn at random from
the jar. Find the probability that

(a) the marble is orange;
(b) the marble is red;

(¢) the marble is orange or blue. O

Problem 3.2. Piggy bank

A piggy bank contains one penny, one nickel, one dime, and one quarter. It is shaken until two
coins fall out at random. What is the probability that at least $0.30 falls out? O

Problem 3.3. Two dice
A person tosses a pair of dice at the same time. Find the probability that

(a) both dice show the same number;
(b) both dice show a number less than 5;
(¢) both dice show an even number;

)

d) the product of the numbers is 12. O
( P
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Problem 3.4. Free throws

A person hits 16 free throws out of 25 attempts. What is the probability that this person will
make a free throw on the next attempt? O

Problem 3.5. Toss of a die

Consider an experiment in which a die is tossed 150 times and the number of times each face is
observed is counted.! The value of A, the number of dots on the face of the die and the number
of times that it appeared is shown in Table 3.1.

(a) What is the predicted average value of A assuming a fair die?

(b) What is the average value of A observed in this experiment? O

value of A | frequency
1 23

28

30

21

23

25

S T W N

Table 3.1: The number of times face A appeared in 150 tosses.

Problem 3.6. What’s in your purse?

A coin is taken at random from a purse that contains one penny, two nickels, four dimes, and three
quarters. If x equals the value of the coin, find the average value of z. O

Problem 3.7. Rules of probability

Based on your solutions to Problems 3.1-3.6, state the rules of probability as you understand them
at this time. O

The following problems are related to the use of probability in everyday life.

Problem 3.8. Choices

Suppose that you are offered the following choice:

(a) A prize of $50.

(b) You flip a (fair) coin and win $100 if you get a head, but $0 if you get a tail.

Which choice would you make? Explain your reasoning. Would your choice change if the prize
was $407 O

IThe earliest known six-sided dice have been found in the Middle East. A die made of baked clay was found
in excavations of ancient Mesopotamia. The history of games of chance is discussed by Deborah J. Bennett,
Randomness, Harvard University Press (1998).
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Problem 3.9. More choices
Suppose that you are offered the following choices:

(a) A prize of $100 is awarded for each head found in ten flips of a coin, or

(b) a prize of $400.

What choice would you make? Explain your reasoning. O

Problem 3.10. Thinking about probability

(a) Suppose that you were to judge an event to be 99.9999% probable. Would you be willing to bet
$999999 against $1 that the event would occur? Discuss why probability assessments should
be kept separate from decision issues.

(b) In one version of the lottery the player chooses six numbers from 1 through 49. The player
wins only if there is an exact match with the numbers that are randomly generated. Suppose
that someone gives you a dollar to play the lottery. What sequence of six numbers between 1
and 49 would you choose? Are some choices better than others?

(¢) Suppose you toss a coin 6 times and obtain heads each time. Estimate the probability that you
will obtain heads on your seventh toss. Now imagine tossing the coin 60 times, and obtaining
heads each time. What do you think would happen on the next toss?

(d) What is the probability that it will rain tomorrow? What is the probability that the Dow
Jones industrial average will increase tomorrow?

(e) Give several examples of the use of probability in everyday life. In each case discuss how you
would estimate the probability. O

3.2 The Rules of Probability

We now summarize the basic rules and ideas of probability.? Suppose that there is an operation
or a process that has several distinct possible outcomes. The process might be the flip of a coin or
the roll of a six-sided die. We call each flip a trial. The list of all the possible events or outcomes is
called the sample space. We assume that the events are mutually exclusive, that is, the occurrence
of one event implies that the others cannot happen at the same time. We let n represent the
number of events, and label the events by the index ¢ which varies from 1 to n. For now we assume
that the sample space is finite and discrete. For example, the flip of a coin results in one of two
events that we refer to as heads and tails and the roll of a die yields one of six possible events.

For each event i, we assign a probability P(i) that satisfies the conditions

P(i) >0, (3.1)

2In 1933 the Russian mathematician A. N. Kolmogorov formulated a complete set of axioms for the mathematical
definition of probability.
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and

Z P(i) = 1. (3.2)

P(i) = 0 means that the event cannot occur, and P(i) = 1 means that the event must occur.
The normalization condition (3.2) says that the sum of the probabilities of all possible mutually
exclusive outcomes is one.

Example 3.1. Sample space of a die

Let x be the number of points on the face of a die. What is the sample space of x7

Solution. The sample space or set of possible events is x; = {1,2,3,4,5,6}. These six outcomes
are mutually exclusive. O

The rules of probability will be summarized in (3.3) and (3.5). These abstract rules must be
supplemented by an interpretation of the term probability. As we will see, there are many different
interpretations of probability because any interpretation that satisfies the rules of probability may
be regarded as a kind of probability.

A common interpretation of probability is based on symmetry. Suppose that we have a two-
sided coin that shows heads and tails. There are two possible mutually exclusive outcomes, and
if the coin is fair, each outcome is equally likely.® If a die with six distinct faces (see Figure 3.1)
is perfect, we can use symmetry arguments to argue that each outcome should be counted equally
and P(i) = 1/6 for each of the six faces. For an actual die, we can estimate the probability
of an outcome a posteriori, that is, by the observation of the outcome of many throws. As we
will see other kinds of information in addition to symmetry arguments can be used to estimate
probabilities.

Figure 3.1: The six possible outcomes of the toss of a die.

Suppose that we know that the probability of rolling any face of a die in one throw is equal
to 1/6, and we want to find the probability of finding face 3 or face 6 in one throw. In this case
we wish to know the probability of a trial that is a combination of more elementary operations
for which the probabilities are already known. That is, we want to know the probability of the
outcome, i or j, where i is distinct from j. According to the rules of probability, the probability
of event i or j is given by

P(ior j) = P(i) + P(j). (addition rule) (3.3)

The relation (3.3) is generalizable to more than two events. An important consequence of (3.3) is
that if P(#) is the probability of event 4, then the probability of event i not occurring is 1 — P(i).

3Is the outcome of a coin toss really random? The outcome of a coin flip is deterministic, but the outcome
depends sensitively on the initial conditions, which we don’t know precisely. See the references at the end of the
chapter.
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Example 3.2. What is the probability of throwing a three or a six with one throw of a die?
Solution. The probability that the face exhibits either 3 or 6 is % + % = % O

Example 3.3. What is the probability of not throwing a six with one throw of die?

Solution. The answer is the probability of either 1 or 2 or 3 or 4 or 5. The addition rule gives that
the probability P(not six) is

P(not six) = P(1) + P(2) + P(3) + P(4) + P(5) (3.42)
—1-P®) = g (3.4D)

where the last relation follows from the fact that the sum of the probabilities for all outcomes sums
to one. It is useful to take advantage of this property when solving many probability problems. ¢

Another simple rule concerns the probability of the joint occurrence of independent events.
These events might be the probability of throwing a 3 on one die and the probability of throwing
a 4 on a second die. If two events are independent, then the probability of both events occurring
is the product of their probabilities

P(i and j) = P(i) P(j). (multiplication rule) (3.5)

Events are independent if the occurrence of one event does not affect the probability of the occur-
rence of the other.

To understand the applicability of (3.5) and the meaning of the independence of events,
consider the problem of determining the probability that a person chosen at random is a female
over six feet tall. Suppose that we know that the probability of a person to be over six feet tall

is P(67) = 15, and the probability of being female is P(female) = 3. We might conclude that
the probability of being a tall female is P(female)P(61) = % X % = %. This same probability
calculation would hold for a tall male. However, this reasoning is incorrect, because the probability
of being a tall female differs from the probability of being a tall male. The problem is that the
two events — being over six feet tall and being female — are not independent. On the other hand,
consider the probability that a person chosen at random is female and was born on September 6.
We can reasonably assume equal likelihood of birthdays for all days of the year, and it is correct
to conclude that this probability is % X % (not counting leap years). Being a woman and being

born on September 6 are independent events.

Problem 3.11. Give an example from your solutions to Problems 3.1-3.6 where you used the
addition rule or the multiplication rule or both. O

Example 3.4. What is the probability of throwing an even number with one throw of a die?

Solution. We can use the addition rule to find that

P(even) = P(2) + P(4)+ P(6) = —~ + (3.6)

|~
| =
>~
NI

O
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Example 3.5. What is the probability of the same face appearing on two successive throws of a
die?

Solution. We know that the probability of any specific combination of outcomes, for example,
(1,1), (2,2), ... (6,6) is ¢ x &+ = 5=. Hence, by the addition rule

1 1
P(same face) = P(1,1) + P(2,2) + ...+ P(6,6) =6 x — =

== (3.7)

0
Example 3.6. What is the probability that in two throws of a die at least one six appears?

Solution. We know that

1 )
There are four possible outcomes (6,6), (6,not 6), (not 6,6), (not 6,not 6) with the respective
probabilities
1 1 1
P6,6)=>x = = — 3.9
(6,6)= 5 x 7= (3.90)
P(6,not 6)—P(not66)—l><§—3 (3.9b)
’ B U676 36 '
5 5 25
P(not 6,not 6) = - x - = —. 3.9
(not 6,not 6) 6% 8= 38 (3.9¢)

All outcomes except the last have at least one six. Hence, the probability of obtaining at least one
six is
P(at least one 6) = P(6,6) + P(6,not 6) + P(not 6,6) (3.10a)
1 5 5 11
- - 47 3.10b
36 + 36 + 36 36 ( )
A more direct way of obtaining this result is to use the normalization condition. That is,

P(at least one six) = 1 — P(not 6,not 6) =1 — % = % (3.10c)
v

Example 3.7. What is the probability of obtaining at least one six in four throws of a die?
Solution. We know that in one throw of a die, there are two outcomes with P(6) = & and

P(not 6) = % as in (3.8). Hence, in four throws of a die there are sixteen possible outcomes, only
one of which has no six. We can use the multiplication rule (3.5) to find that

54
P(not 6,not 6,not 6,not 6) = P(not 6)* = (6) , (3.11)
and hence
P(at least one six) = 1 — P(not 6, not 6,not 6,not 6) (3.12a)
5\4 671
=1 (2) = f5ac ~ 0517, 3.12b
6 1296 ( )

O
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Frequently we know the probabilities only up to a constant factor. For example, we might know
P(1) = 2P(2), but not P(1) or P(2) separately. Suppose we know that P(4) is proportional to f(i),
where f(i) is a known function. To obtain the normalized probabilities, we divide each function
f(@@) by the sum of all the unnormalized probabilities. That is, if P(i) & f(i) and Z = > f(i),
then P(i) = f(i)/Z. This procedure is called normalization.

Example 3.8. Suppose that in a given class it is three times as likely to receive a C' as an A,
twice as likely to obtain a B as an A, one-fourth as likely to be assigned a D as an A, and nobody
fails the class. What are the probabilities of getting each grade?

Solution. We first assign the unnormalized probability of receiving an A as f(A) = 1. Then
f(B) =2, f(C) =3, and f(D) = 0.25. Then Z = ). f(i) = 1+ 2+ 3+ 0.25 = 6.25. Hence,
P(A) = f(A)/Z =1/6.25 = 0.16, P(B) = 2/6.25 = 0.32, P(C') = 3/6.25 = 0.48, and P(D) =
0.25/6.25 = 0.04. O

The normalization procedure arises again and again in different contexts. We will see that
much of the mathematics of statistical mechanics can be formulated in terms of the calculation of
normalization constants.

Problem 3.12. Rolling the dice

If a person rolls two dice, what is the probability P(n) of getting the sum n? Plot P(n) as a
function of n. O

Problem 3.13. An almost even bet

What is the probability of obtaining at least one double six in twenty-four throws of a pair of
dice? O

Problem 3.14. Rolling three dice

Suppose that three dice are thrown at the same time. What is the ratio of the probabilities that
the sum of the three faces is 10 compared to 97 O

Problem 3.15. Fallacious reasoning

What is the probability that the total number of spots shown on three dice thrown at the same
time is 117 What is the probability that the total is 127 What is the fallacy in the following
argument? The number 11 occurs in six ways: (1,4,6), (2,3,6), (1,5,5), (2,4,5), (3,3,5), (3,4,4). The
number 12 also occurs in six ways: (1,5,6), (2,4,6), (3,3,6), (2,5,5), (3,4,5), (4,4,4) and hence the
two numbers should be equally probable. O

3.3 Mean Values

The specification of the probability distribution P(1), P(2), ... P(n) for the n possible values of the
variable x constitutes the most complete statistical description of the system. However, in many
cases it is more convenient to describe the distribution of the possible values of x in a less detailed
way. The most familiar way is to specify the average or mean value of x, which we will denote as
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Z. The definition of the mean value of z is

x1P(1) + 22P(2) + ...+ 2, P(n) (3.13a)

- ixip(i), (3.13b)

T

where P(7) is the probability of ;. If f(x) is a function of x, then the mean value of f(x) is given
by

J@) =) f@)P). (3.14)
i=1
If f(x) and g(x) are any two functions of z, then
f(x) +9(z) = Z[f(il?z‘) + g(x:)|P(3) (3.15a)

= [ P@) + g P(), (3.15D)

or
f(@) +9(z) = f(z) +g(2). (3.15¢)

Problem 3.16. Show that if ¢ is a constant, then
cf(z) = cf(x). (3.16)
O

We define the mth moment of the probability distribution P as
=Y a"P(i), (3.17)
i=1

where we have let f(z) = 2™. The mean of z is the first moment of the probability distribution.

Problem 3.17. Suppose that the variable z takes on the values —2, —1, 0, 1, and 2 with proba-
bilities 1/16, 4/16, 6/16, 4/16, and 1/16, respectively. Calculate the first two moments of z. [

The mean value of x is a measure of the central value of x about which the various values of
x; are distributed. If we measure the deviation of z from its mean, we have

Az =z —T7, (3.18)

and

Ar=(x—7)=7—-7=0. (3.19)

That is, the average value of the deviation of x from its mean vanishes.



CHAPTER 3. CONCEPTS OF PROBABILITY 115

If only one outcome j were possible, we would have P(i) = 1 for i = j and zero otherwise; that
is, the probability distribution would have zero width. Usually, there is more than one outcome
and a measure of the width of the probability distribution is given by

A= (z—-7)° (3.20)

The quantity Az? is known as the dispersion or variance and its square root is called the standard
deviation. The use of the square of x — T ensures that the contribution of x values that are smaller
and larger than T contribute to Az? with the same sign. It is easy to see that the larger the spread
of values of x about T, the larger the variance. A useful form for the variance can be found by
noting that

(x—7)° = (22 — 227+ 72 (3.21a)
=22 - T+ T, (3.21b)
=22 — 72, (3.21c)

Because Az? is always nonnegative, it follows that 22 > Z2.

The variance is the mean value of (x — ¥)? and represents the square of a width. We will
find that it is useful to interpret the width of the probability distribution in terms of the standard
deviation o, which is defined as the square root of the variance. The standard deviation of the
probability distribution P(z) is given by

0 = VAz? = /(22 —7%). (3.22)

Example 3.9. Find the mean value T, the variance Az2, and the standard deviation o, for the
value of a single throw of a die.

Solution. Because P(i) = % fori=1,...,6, we have that
_ 1 7
x:6(1+2+3+4+5+6):§:3.5 (3.23a)
— 1 46
I2:6(1+4+9+16+25+36):? (3.23Db)
—_ — 4 4
AxZ =22 -7 = ?6 - Zg = % ~ 3.08 (3.23¢)
o, ~ V3.08 =1.76. (3.23d)

O

Example 3.10. On the average, how many times must a die be thrown until a 6 appears?
Solution. Although it might be obvious that the answer is six, it is instructive to confirm this
answer directly. Let p be the probability of a six on a given throw.

To calculate m, the mean number of throws needed before a six appears, we calculate the
probability of obtaining a six for the first time on the ith throw, multiply this probability by <,
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throw probability of
success on trial ¢

p

qp
*p
¢p

= W N

Table 3.2: Probability of a six for the first time on throw i, where p = 1/6 is the probability of a
six on a given throw and ¢ =1 — p.

and then sum over all i. The first few probabilities are listed in Table 3.2. The resulting sum is

m=p+2pq+3pg® +4pg> + - - (3.24a)
=p(1+2¢+3¢4+---) (3.24Db)
d
:pd—q(1+q+q2+q3+---) (3.24c)
a 1 P 1

PagT—¢ ~ 092~ p (3.24d)
Another way to obtain this result is to use the following recursive argument. Because the throws
are independent, the mean number of additional throws needed after throwing the die any number
of times is still m. If we throw the die once and do not obtain a six, we will need on average m
more throws or a total of m + 1. If we throw it twice and do not obtain a six on either throw,
we will need m more throws or a total of m + 2 and so forth. The contribution to the mean due
to failing on the first throw and then succeeding sometime later is g(m + 1). The probability of
succeeding on the first throw is p and the contribution to the mean is p(1) = p. The mean is the
sum of these two terms or m = (1 — p)(m + 1) + p. The solution for m is m = 1/p. O

3.4 The Meaning of Probability

How can we assign probabilities to the various events? If event F; is more probable than event
E, (P(E1) > P(E3)), we mean that E; is more likely to occur than E,. This statement of
our intuitive understanding of probability illustrates that probability is a way of classifying the
plausibility of events under conditions of uncertainty. Probability is related to our degree of belief
in the occurrence of an event.

This definition of probability is not bound to a single evaluation rule and there are many
ways to obtain P(E;). For example, we could use symmetry considerations as we have done, past
frequencies, simulations, theoretical calculations, or as we will learn in Section 3.4.2, Bayesian
inference. Probability assessments depend on who does the evaluation and the status of the
information the evaluator has at the moment of the assessment. We always evaluate the conditional
probability, that is, the probability of an event E given the information I, P(E|I). Consequently,
several people can have simultaneously different degrees of belief about the same event, as is well
known to investors in the stock market.
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If rational people have access to the same information, they should come to the same conclu-
sion about the probability of an event. The idea of a coherent bet forces us to make probability
assessments that correspond to our belief in the occurrence of an event. If we consider an event to
be 50% probable, then we should be ready to place an even bet on the occurrence of the event or
on its opposite. However, if someone wishes to place the bet in one direction but not in the other,
it means that this person thinks that the preferred event is more probable than the other. In this
case the 50% probability assessment is incoherent and this person’s wish does not correspond to
his or her belief.

A coherent bet has to be considered wirtual. For example, a person might judge an event
to be 99.9999% probable, but nevertheless refuse to bet $999999 against $1, if $999999 is much
more than the person’s resources. Nevertheless, the person might be convinced that this bet
would be fair if he/she had an infinite budget. Probability assessments should be kept separate
from decision issues. Decisions depend not only on the probability of the event, but also on the
subjective importance of a given amount of money (see for example, Problems 3.10 and 3.85).

Our discussion of probability as the degree of belief that an event will occur shows the in-
adequacy of the frequency definition of probability, which defines probability as the ratio of the
number of desired outcomes to the total number of possible outcomes. This definition is inadequate
because we would have to specify that each outcome has equal probability. Thus we would have to
use the term probability in its own definition. If we do an experiment to measure the frequencies of
various outcomes, then we need to make an additional assumption that the measured frequencies
will be the same in the future as they were in the past. Also we have to make a large number of
measurements to ensure accuracy, and we have no way of knowing a priori how many measurements
are sufficient. Thus, the definition of probability as a frequency really turns out to be a method
for estimating probabilities with some hidden assumptions.

Our definition of probability as a measure of the degree of belief in the occurrence of an
outcome implies that probability depends on our prior knowledge, because belief depends on prior
knowledge. For example, if we toss a coin and obtain 100 tails in a row, we might use this
knowledge as evidence that the coin or toss is biased, and thus estimate that the probability of
throwing another tail is very high. However, if a careful physical analysis shows that there is no
bias, then we would stick to our estimate of 1/2. The probability assessment depends on what
knowledge we bring to the problem. If we have no knowledge other than the possible outcomes,
then the best estimate is to assume equal probability for all events. However, this assumption is
not a definition, but an example of belief. As an example of the importance of prior knowledge,
consider the following problem.

Problem 3.18. A couple with two children

(a) A couple has two children. What is the probability that at least one child is a girl?

(b) Suppose that you know that at least one child is a girl. What is the probability that both
children are girls?

(¢) Instead suppose that we know that the oldest child is a girl. What is the probability that the
youngest is a girl? O
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We know that we can estimate probabilities empirically by sampling, that is, by making
repeated measurements of the outcome of independent events. Intuitively we believe that if we
perform more and more measurements, the calculated average will approach the exact mean of the
quantity of interest. This idea is called the law of large numbers.

As an example, suppose that we flip a single coin M times and count the number of heads. Our
result for the number of heads is shown in Table 3.3. We see that the fraction of heads approaches
1/2 as the number of measurements becomes larger.

tosses heads | fraction of heads

10 4104
50 29 | 0.58
100 49 | 0.49
200 101 | 0.505

500 235 | 0.470
1,000 518 | 0.518
10,000 4997 | 0.4997
100,000 | 50021 | 0.50021
500,000 | 249946 | 0.49999
1,000,000 | 500416 | 0.50042

Table 3.3: The number and fraction of heads in M tosses of a coin. We did not really toss a coin
in the air 10° times. Instead we used a computer to generate a sequence of random numbers to
simulate the tossing of a coin. Because you might not be familiar with such sequences, imagine a
robot that can write the positive integers between 1 and 23! on pieces of paper. The robot places
these pieces in a hat, shakes the hat, and then chooses the pieces at random. If the number chosen
is less than % x 231 then we say that we found a head. Each piece is placed back in the hat after
it is read.

Problem 3.19. Multiple tosses of a single coin

Use program CoinToss to simulate multiple tosses of a single coin. What is the correspondence
between this simulation of a coin being tossed many times and the actual physical tossing of a
coin? If the coin is “fair,” what do you think the ratio of the number of heads to the total number
of tosses will be? Do you obtain this number after 100 tosses? 10,000 tosses? O

Another way of estimating the probability is to perform a single measurement on many copies
or replicas of the system of interest. For example, instead of flipping a single coin 100 times in
succession, we collect 100 coins and flip all of them at the same time. The fraction of coins that
show heads is an estimate of the probability of that event. The collection of identically prepared
systems is called an ensemble, and the probability of occurrence of a single event is estimated with
respect to this ensemble. The ensemble consists of a large number M of identical systems, that is,
systems that satisfy the same known conditions.

If the system of interest is not changing in time, it is reasonable to assume that an estimate of
the probability by either a series of measurements on a single system at different times or similar
measurements on many identical systems at the same time would give consistent results.

Note that we have estimated various probabilities by a frequency, but have not defined proba-
bility in terms of a frequency. As emphasized by D’Agostini, past frequency is experimental data.
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This data happened with certainty so the concept of probability no longer applies. Probability is
how much we believe that an event will occur taking into account all available information includ-
ing past frequencies. Because probability quantifies the degree of belief at a given time, it is not
directly measurable. If we make further measurements, they can only influence future assessments
of the probability.

3.4.1 Information and uncertainty

Consider two experiments that each have two outcomes FE; and Fs with probabilities P, and Ps.
For example, the experiments could correspond to the toss of a coin. In the first experiment the
coin has probabilities P, = P, = 1/2, and in the second experiment (a bent coin) P, = 1/5 and
P, = 4/5. Intuitively, we would say that the result of the first experiment is more uncertain than
the result of the second experiment.

Next consider two additional experiments. In the third experiment there are four outcomes
with P, = P, = P3 = P, = 1/4, and in the fourth experiment there are six outcomes with
P, = P, =P3; =P, = P; = P; = 1/6. The fourth experiment is the most uncertain because there
are more equally likely outcomes and the second experiment is the least uncertain.

We will now introduce a mathematical measure that is consistent with our intuitive sense of
uncertainty. Let us define the uncertainty function S(Py, Ps, ..., P;,...) where P; is the probability
of event i. We first consider the case where all the probabilities P; are equal. Then Py = P, = ... =
P; =1/Q, where Q is the total number of outcomes. In this case we have S = S(1/Q,1/9,...) or
simply S(€).

It is easy to see that S(£2) has to satisfy some simple conditions. For only one outcome, 2 = 1
and there is no uncertainty. Hence we must have

S =1)=0. (3.25)

We also have that
S(Ql) > S(Qg) if Q1 > Q. (326)

That is, S(€2) is an increasing function of (2.

We next consider the form of S for multiple events. For example, suppose that we throw a
die with ©; outcomes and flip a coin with €25 equally probable outcomes. The total number of
outcomes is 2 = Q1. If the result of the die is known, the uncertainty associated with the die
is reduced to zero, but there still is uncertainty associated with the toss of the coin. Similarly, we
can reduce the uncertainty in the reverse order, but the total uncertainty is still nonzero. These

considerations suggest that
S(1Q2) = S(Q1) + S(22). (3.27)

It is remarkable that there is an unique functional form that satisfies the three conditions
(3.25)—(3.27). We can find this form by writing (3.27) in the form

S(zy) = S(x) + S(y), (3.28)

and taking the variables  and y to be continuous. (The analysis can be done assuming that x
and y are discrete variables, but the analysis is simpler if we assume that x and y are continuous.)
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Now we take the partial derivative of S(zy) with respect to x and then with respect to y. We let
z = xy and obtain

98(z) _ 02dS(z) dS(z)

or  or dz 7 d» (3:292)
08(z)  0zdS(z)  dS(z)
TR TR i (3.29b)
From (3.28) we have
0S(z)  dS(x)
= (3.30a)
95(z) _ dS(y)
= —. 3.30b
By i (3.30b)
By comparing the right-hand side of (3.29) and (3.30), we have
as as
as s
If we multiply (3.31a) by = and (3.31b) by y, we obtain
de(:v) _ dsS(y) :ZdS(z)' (3.32)

dx 4 dy dz

Note that the first term in (3.32) depends only on = and the second term depends only on y.
Because x and y are independent variables, the three terms in (3.32) must be equal to a constant.
Hence we have the desired condition

= y—2 = A, (3.33)

where A is a constant. The differential equation in (3.33) can be integrated to give
S(x) = Alnz + B. (3.34)

The integration constant B must be equal to zero to satisfy the condition (3.25). The constant A
is arbitrary so we choose A = 1. Hence for equal probabilities we have that

S(€) = In Q. (3.35)

What about the case where the probabilities for the various events are unequal? We will not
derive the result here but only state the result that the general form of the uncertainty S is

S=-Y PP, (3.36)
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Note that if all the probabilities are equal, then

1
P==. 3.37
q (3.37)

for all 7. In this case 1 1 1
S:—zi:ﬁmﬁ:(zﬁm(z:lng, (3.38)

because there are € equal terms in the sum. Hence (3.36) reduces to (3.35) as required. We also
see that if outcome j is certain, P; =1 and P, =01if i # j and S = —1In1 = 0. That is, if the
outcome is certain, the uncertainty is zero and there is no missing information.

We have shown that if the P; are known, then the uncertainty or missing information S
can be calculated. Usually the problem is the other way around, and we want to determine the
probabilities. Suppose we flip a perfect coin for which there are two possibilities. We expect that
Py (heads) = P»(tails) = 1/2. That is, we would not assign a different probability to each outcome
unless we had information to justify it. Intuitively we have adopted the principle of least bias or
mazimum uncertainty. Let’s reconsider the toss of a coin. In this case S is given by

S=-> PInP,=—(P\nP + P,InPy) (3.39a)
:—(P11DP1+(1—P1)111(1—P1), (339b)
where we have used the fact that P, + P, = 1. We use the principle of maximum uncertainty and
set the derivative of S with respect to P; equal to zero:*
ds Py
—=—[nP+1—-In(1—P)—1]=-1 =0. 3.40
= ~InP L= —P) — 1] = —ln (3.40)
The solution of (3.40) satisfies
Py
=1 3.41
1 _ Pl ) ( )

which is satisfied by P; = 1/2. We can check that this solution is a maximum by calculating the

second derivative.
028 1 1

opz =~ B T1opl T

which is less than zero, as expected for a maximum.

—4, (3.42)

Problem 3.20. Uncertainty

(a) Consider the toss of a coin for which P, = P» = 1/2 for the two outcomes. What is the
uncertainty in this case?

(b) What is the uncertainty for P, = 1/5 and P, = 4/5? How does the uncertainty in this case
compare to that in part (a)?

4We have used the fact that d(Inz)/dx = 1/z.
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(¢) On page 119 we discussed four experiments with various outcomes. Compare the uncertainty
S of the third and fourth experiments. O

Example 3.11. The toss of a three-sided die yields events F4, Fo, and E3 with a face of one, two,
and three points, respectively. As a result of tossing many dice, we learn that the mean number
of points is f = 1.9, but we do not know the individual probabilities. What are the values of Py,
P, and P; that maximize the uncertainty consistent with the information that f = 1.97

Solution. We have
S:—[P11DP1+P21HP2—|—P31HP3]. (343)

We also know that
f=1P, + 2P, + 3Ps, (344)

and P; + P, + P; = 1. We use the latter condition to eliminate Ps using P3 = 1 — P; — P», and
rewrite (3.44) as
f=P+2P,+3(1—P,— P,)=3-2P, — P». (3.45)

We then use (3.45) to eliminate P» and P from (3.43) with P, =3 — f —2P; and Ps = f —2+ Pi:
S=—[PPlnP +B3—f—2P)In(3—f—2P) +(f -2+ P)In(f — 2+ P,))]. (3.46)

Because S in (3.46) depends on only P;, we can differentiate S with respect to P to find its
maximum value:

ds
= =- [mpl — 123 - f—2P) — 1]+ [In(f -2+ P) — 1] (3.47a)

1

P(f-2+P)

=ln—F—==0. 3.47b
BT —2p) 3470)
We see that for dS/dP; to be equal to zero, the argument of the logarithm must be one. The result
is a quadratic equation for P; (see Problem 3.21). O
Problem 3.21. Fill in the missing steps in Example 3.11 and solve for P;, P,, and Ps. |

In Section 3.11.1 we consider maximizing the uncertainty for a case for which there are more
than three outcomes.

3.4.2 *Bayesian inference

Conditional probabilities are not especially important for the development of equilibrium statistical
mechanics, so this section may be omitted for now. Conditional probability and Bayes’ theorem
are very important for the analysis of data including spam filters for email and image restoration,
for example. Bayes’ theorem gives us a way of understanding how the probability that a hypothesis
is true is affected by new evidence.

Let us define P(A|B) as the probability of A occurring given that we know that B has occurred.

We know that
P(A) = P(A|B) + P(A|-B), (3.48)
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where —B means that B did not occur. We also know that
P(A and B) = P(A|B)P(B) = P(BJ|A)P(A). (3.49)

Equation (3.49) means that the probability that A and B occur equals the probability that A occurs
given B times the probability that B occurs, which is the same as the probability that B occurs
given A times the probability that A occurs. Note that P(A and B) is the same as P(B and A),
but P(A|B) does not have the same meaning as P(BJA).

We can rearrange (3.49) to obtain Bayes’ theorem

P(BJA)P(A)

P(AB) = =5

(Bayes’ theorem) (3.50)

We can generalize (3.50) for multiple possible outcomes A; for the same B. We rewrite (3.50) as

P(BJAi)P(A)

(multiple outcomes) (3.51)

If all the A; are mutually exclusive and if at least one of the A; must occur, then we can also write

P(B) =Y P(BJA;)P(A;). (3.52)

If we substitute (3.52) for P(B) into (3.51), we obtain

Bayes’ theorem is very useful for finding the most probable explanation of a given data set. In this
context A; represents the possible explanation and B represents the data. As more data becomes
available, the probabilities P(BJA;)P(A;) change.

Example 3.12. A chess program has two modes, expert (E) and novice (N). The expert mode
beats you 75% of the time and the novice mode beats you 50% of the time. You close your eyes
and randomly choose one of the modes and play two games. The computer wins (W) both times.
What is the probability that you chose the novice mode?

Solution. The probability of interest is P(N[WW), which is difficult to calculate directly. Bayes
theorem lets us use the probability P(WW/|N), which is easy to calculate, to determine P(N|[WW).

We use (3.50) to write
WW|N)P(N)

P(
P(NJWW) =
We know that P(N) = 1/2 and P(WW|N) = (1/2)% = 1/4.
We next have to calculate P(WW). There are two ways that the program could have won
the two games: You chose the novice mode and it won twice, or you chose the expert mode and

(3.54)
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it won twice. Because N and E are mutually exclusive, we have P(WW) = P(N and WW) +
P(E and WW). From (3.49) we have

POWW) = P(WW|N)P(N) + P(WWIE)P(E) (3.550)
= (1/2 % 1/2 % 1/2) + (3/4 x 3/4 x 1/2):;_3. (3.55D)
Hence
CPO(WWN)P(N)  (1/4x1/2) 4 _
PINWW) = =gy = e = g~ 031, (3.56)

Note that the probability of choosing the novice mode has decreased from 50% to about 31%
because you have the additional information that the computer won twice and thus you are more
likely to have chosen the expert mode. O

Example 3.13. Alice plants two types of flowers in her garden: 30% of type A and 70% of type
B. Both types yield either red or yellow flowers, with P(red|A) = 0.4 and P(red|B) = 0.3.

(a) What is the percentage of red flowers that Alice will obtain?
Solution. We can use the total probability law (3.49) to write

P(red) = P(red|A)P(A) + P(red|B)P(B) (3.57a)
= (0.4 % 0.3) + (0.3 x 0.7) = 0.33. (3.57b)

So Alice will find on average that one of three flowers will be red.

(b) Suppose a red flower is picked at random from Alice’s garden. What is the probability of the
flower being type A?

Solution. We apply Bayes’ theorem (3.53) and obtain

P(red|A)P(A)
(red|A)P(A) + P(red|B)P(B)
0.4 x0.3 12

4
- =2 = _— ~0.36. 3.58b
(04x03)+(03x07) 33 11 (8-58D)

P(Afred) = (3.58a)

We find that given that the flower is red, its probability of being type A increases to 0.36
because type A has a higher probability than type B of yielding red flowers. O

Example 3.14. Do you have a fair coin?
Suppose that there are four coins of the same type in a bag. Three of them are fair, but the fourth

is double-headed. You choose one coin at random from the bag and toss it five times. It comes up
heads each time. What is the probability that you have chosen the double-headed coin?

Solution. If the coin were fair, the probability of five heads in a row (5H) would be (1/2)% = 1/32 ~
0.03. This probability is small, so you would probably decide that you have not chosen a fair coin.
But because you have more information, you can determine a better estimate of the probability.
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We have
P(5H) = P(5H|fair) P(fair) + P(5H|not fair)P(not fair) (3.59a)
=[(1/2)° x 3/4] + [1 x 1/4] = 35/128 ~ 0.27. (3.59b)
P(fair|sH) = P(5H|fair) P(fair)/P(5H) (3.59¢)
_ 1(/2)° x3/4] _ _
= s =012 (3.59d)

Thus the probability that the coin is fair given the five heads in succession is less than the proba-
bility 3/4 of picking a fair coin randomly out of the bag. O

Problem 3.22. More on choosing a fair coin

Suppose that you have two coins that look and feel identical, but one is double-headed and one is
fair. The two coins are placed in a box and you choose one at random.

(a) What is the probability that you have chosen the fair coin?

(b) Suppose that you toss the chosen coin twice and obtain heads both times. What is the
probability that you have chosen the fair coin? Why is this probability different than in
part (a)?

(¢) Suppose that you toss the chosen coin four times and obtain four heads. What is the probability
that you have chosen the fair coin?

(d) Suppose that there are ten coins in the box with nine fair and one double-headed. You toss
the chosen coin twice and obtain two heads. What is the probability that you have chosen the
fair coin?

(e) Now suppose that the biased coin is not double-headed, but has a probability of 0.98 of coming
up heads. Also suppose that the probability of choosing the biased coin is 1 in 10*. What is
the probability of choosing the biased coin given that the first toss yields heads? O

Example 3.15. Let’s Make A Deal

Consider the quandary known as the Let’s Make A Deal or Monty Hall problem.® In this former
television show a contestant is shown three doors. Behind one door is an expensive prize such as
a car and behind the other two doors are inexpensive gifts such as a tie. The contestant chooses
a door. Suppose the contestant chooses door 1. Then the host opens door 2 containing the tie
knowing that the car is not behind door 2. The contestant now has a choice — stay with the original
choice or switch to door 37 What would you do?

Let us use Bayes’ theorem (3.53) to determine the best course of action. We want to calculate

P(A1|B) = P(car behind door 1|door 2 open after door 1 chosen), (3.60a)

and

5This question was posed on the TV game show, “Let’s Make A Deal,” hosted by Monty Hall. See for example,
www.letsmakeadeal.com/problem.htm> and <www.nytimes.com/2008/04/08/science/08monty.html>.


www.letsmakeadeal.com/problem.htm>
http://www.letsmakeadeal.com/problem.htm
<www.nytimes.com/2008/04/08/science/08monty.html>
http://www.nytimes.com/2008/04/08/science/08monty.html
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P(A3|B) = P(car behind door 3|door 2 open after door 1 chosen), (3.60b)

where A; denotes car behind door i. We know that all the P(A;) equal 1/3, because with no
information we assume that the probability that the car is behind each door is the same. Because
the host can open door 2 or 3 if the car is behind door 1, but can only open door 2 if the car is
behind door 3 we have

1
P(door 2 open after door 1 chosen|car behind 1) = 3 (3.61a)
P(door 2 open after door 1 chosen|car behind 2) = 0 (3.61b)
P(door 2 open after door 1 chosen|car behind 3) = 1. (3.61c)
From Bayes’ theorem we have

2 %3 1
P(car behind 1|door 2 open after door 1 chosen) = = — 3.62a
( | P ) (3x3)+0O0x3)+(1Axz) 3 ( )
P(car behind 3|door 2 fter door 1 chosen) Lx 5 2 (3.62b)

car behin oor 2 open after door 1 chosen) = =-. .
P (3x3)+0O0x3)+1xz) 3

The results in (3.62) suggest the contestant has a higher probability of winning the car by switch-
ing doors and choosing door 3. The same logic suggests that one should always switch doors
independently of which door was originally chosen.

Problem 3.23. Simple considerations

Make a table showing the three possible arrangements of the car and explain in simple terms why
switching doubles the chances of winning.

Problem 3.24. What does the host know?

The point of Bayesian statistics is that it approaches a given data set with a particular model in
mind. In the Let’s Make A Deal problem the model we have used is that the host knows where
the car is.

(a) Suppose that the host doesn’t know where the car is, but chooses door 2 at random and there
is no car. What is the probability that the car is behind door 1?7

(b) Is the probability that you found in part (a) the same as found in Example 3.15? Discuss why
the probability that the car is behind door 1 depends on what the host knows. O

Example 3.16. Bayes theorem and the problem of false positives

Even though you have no symptoms, your doctor wishes to test you for a rare disease that only 1
in 10,000 people of your age contract. The test is 98% accurate, which means that if you have the
disease, 98% of the times the test will come out positive and 2% negative. Also if you do not have
the disease, the test will come out negative 98% of the time and positive 2% of the time. You take
the test and it comes out positive. What is the probability that you have the disease? Answer the
question before you read the solution using Bayes theorem.
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Solution. Let P(D) represent the probability of having the disease given no other information
except the age of the person. In this example P(D) = 1/10000 = 0.0001. The probability of not
having the disease is P(N) =1 — P(D) = 0.9999. Let P(+|D) = 0.98 represent the probability of
testing positive given that you have the disease, and P(+|N) = 0.02 represent the probability of
testing positive given that you do not have the disease. We wish to find the probability P(D|+)
that you will test positive for the disease and actually be sick. From Bayes’ theorem we have

_ P(+|D)P(D)

P(Dl+) = P(+|D)P(D) + P(+|N)P(N) (3.63a)
B (0.98)(0.0001)
~ (0.98)(0.0001) + (0.02)(0.9999) (3.63b)
— 0.0047 = 0.47%. (3.630)

We expect that you will find this result difficult to accept. How can it be that the probability of
having the disease is so small given the high reliability of the test? This example, and others like
it, shows our lack of intuition about many statistical problems. O

Problem 3.25. Testing accuracy

Suppose that a person tests positive for a disease that occurs in 1 in 100, 1 in 1000, 1 in 10,000,
or 1 in 100,000 people. Determine in each case how accurate the test must be for the test to give
a probability equal to at least 50% of actually having a disease. O

Because of the problem of false positives, some tests might actually reduce your life span and
thus are not recommended. Suppose that a certain type of cancer occurs in 1 in 1000 people who
are less than 50 years old. The death rate from this cancer is 25% in 10 years. The probability of
having cancer if the test is positive is 1 in 20. Because people who test positive become worried,
90% of the patients who test positive have surgery to remove the cancer. As a result of the surgery,
2% die due to complications, and the rest are cured. We have that

P(death rate due to cancer) = P(death|cancer)P(cancer) (3.64a)
= 0.25 x 0.001 = 0.00025 (3.64Db)

P(death due to test) = P(die|surgery)P(surgery|positive) P(positive |cancer)  (3.64c)

=0.02 x 0.90 x 0.02 = 0.00036. (3.64d)

Hence, the probability of dying from the surgery is greater than dying from the cancer.

Problem 3.26. Three balls in a sack

Imagine that you have a sack of 3 balls that can be either red or green. There are four hypotheses
for the distribution of colors for the balls: (1) all are red, (2) 2 are red, (3) 1 is red, and (4) all are
green. Initially, you have no information about which hypothesis is correct, and thus you assume
that they are equally probable. Suppose that you pick one ball out of the sack and it is green. Use
Bayes’ theorem to determine the new probabilities for each hypothesis. |

We have emphasized that the definition of probability as a frequency is inadequate. If you are
interesting in learning more about Bayesian inference, see in particular the paper by D’Agostini.
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Figure 3.2: The energy of a spin 1/2 magnetic dipole. Note that the state of lowest energy is
negative.

3.5 Bernoulli Processes and the Binomial Distribution

Because most physicists spend little time gambling,® we will have to develop our intuitive under-
standing of probability in other ways. Our strategy will be to first consider some physical systems
for which we can calculate the probability distribution by analytical methods. Then we will use
the computer to generate more data to analyze.

Noninteracting magnetic moments

Consider a system of N noninteracting magnetic dipoles each having a magnetic moment p and
associated spin in an external magnetic field B. The field B is in the up (+z) direction. According
to quantum mechanics the component of the magnetic dipole moment along a given axis is limited
to certain discrete values. Spin 1/2 implies that a magnetic dipole can either point up (parallel
to B) or down (antiparallel to B). We will use the word spin as a shorthand for magnetic dipole.
The energy of interaction of a spin with the magnetic field is ' = —uB if the spin is up and +uB
if the spin is down (see Figure 3.2). More generally, we can write £ = —suB, where s = +1 (spin
up) or s = —1 (spin down). As discussed in Section 1.9, page 22, this model is a simplification of
a more realistic magnetic system.

We will take p to be the probability that the spin (magnetic moment) is up and ¢ the probability
that the spin is down. Because there are no other possible outcomes,we have p4+q¢=1or ¢ =1—p.
If B = 0, there is no preferred spatial direction and p = ¢ = 1/2. For B # 0 we do not yet know
how to calculate p and for now we will assume that p is given. In Section 4.8 we will learn how to
calculate p and ¢ when the system is in equilibrium at temperature 7.

We associate with each spin a random variable s; which has the values +1 with probability
p and ¢, respectively. One of the quantities of interest is the magnetization M, which is the net

6 After a Las Vegas hotel hosted a meeting of the American Physical Society (APS) in March, 1986, the APS was
asked never to return. The Las Vegas newspaper headline read, “Meeting of physicists in town, lowest casino take
ever.”
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magnetic moment of the system. For a system of IV spins the magnetization is given by

N
M:u(sl+52+...+sN)=qui. (3.65)
i=1

In the following, we will take y = 1 for convenience whenever it will not cause confusion.

We will first calculate the mean value of M, then its variance, and finally the probability
distribution P(M) that the system has magnetization M. To calculate the mean value of M, we
need to take the mean values of both sides of (3.65). We interchange the sum and the average (see
(3.15¢)) and write

N N
M = (Zsi) -y = (3.66)
i=1 i=1
Because the probability that any spin has the value 41 is the same for each spin, the mean value
of each spin is the same, that is, 57 =33 = ... = 5y = 5. Therefore the sum in (3.66) consists of
N equal terms and can be written as
M = N&. (3.67)

The meaning of (3.67) is that the mean magnetization is N times the mean magnetization of a
single spin. Because 5 = (1 x p) + (=1 X ¢) = p — ¢, we have that

M = N(p—q). (3.68)

To calculate the variance of M, that is, (M — M)2, we write

N
AM =M -M =Y As;, (3.69)
i=1
where
As; = s; — 5. (3.70)

As an example, let us calculate (AM)? for N = 3 spins. In this case (AM)? is given by

(AM)? = (Asy + Asy + Asz)(Asy + Asy + Asg) (3.71a)
g [(A51)2 + (ASQ)Q + (ASg)ﬂ + 2[A51A52 + A81A53 + ASQASg} . (371b>

We take the mean value of (3.71b), interchange the order of the sums and averages, and write

(AM)? = [(As1)? + (Asg)? + (Asz)?] +2[As1Asy + AsiAsg + AsaAss]. (3.72)

The first term in brackets on the right of (3.72) represents the three terms in the sum that are
multiplied by themselves. The second term represents all the cross terms arising from different
terms in the sum, that is, the products in the second sum refer to different spins. Because different
spins are statistically independent (the spins do not interact), we have that

As;As; =Ns; As; =0, (i #7) (3.73)
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because As; = 0. That is, each cross term vanishes on the average. Hence (3.73) reduces to a sum
of squared terms

(AM)? = [(As1)% + (As2)2 + (As3)?]. (3.74)

Because each spin is equivalent on the average, each term in (3.74) is equal. Hence, we obtain the
desired result

(AM)? = 3(As)2. (3.75)
The variance of M is 3 times the variance of a single spin, that is, the variance is additive.

We now evaluate (AM)2 by finding an explicit expression for (As)2. We have s2 = [12 x p] +
[(=1)2 x q] = p+ q = 1. Hence,

(As)2=52-5>=1—(p—q)?>=1—(2p—1)* (3.76a)
=1—4p* +4p—1=4p(1 —p) = 4pq, (3.76D)

and our desired result for (AM)? is

(AM)2 = 3(4pq). (3.77)

Problem 3.27. Variance of N spins

In the text we showed that (AM)? = 3(As)? for N = 3 spins (see (3.75) and (3.77)). Use similar
considerations for N noninteracting spins to show that

(AM)? = N(4pq). (3.78)
O

Because of the simplicity of a system of noninteracting spins, we can calculate the probability
distribution itself and not just the first few moments. As an example, let us consider the statistical
properties of a system of N = 3 noninteracting spins. Because each spin can be in one of two
states, there are 2V=2 = 8 distinct outcomes (see Figure 3.3). Because each spin is independent
of the other spins, we can use the multiplication rule (3.5) to calculate the probabilities of each
outcome as shown in Figure 3.3. Although each outcome is distinct, several of the configurations
have the same number of up spins. The main quantity of interest is the probability Py (n) that n
spins point up out a total of N spins. For example for N = 3 spins, there are three states with
n = 2, each with probability p?q so the probability that two spins are up is equal to 3p%q. From
Figure 3.3 we see that

Py(n =3)=p* (3.79a)
Py(n = 2) = 3p%q (3.79b)
Py(n =1) = 3pg® (3.79¢)
Ps(n =0) =¢> (3.79d)
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Figure 3.3: An ensemble of N = 3 spins. The arrow indicates the direction of a spin. The
probability of each member of the ensemble is shown.

Example 3.17. Find the first two moments of Ps(n).
Solution. The first moment 7 of the distribution is given by

7= (0x¢*) + (1 x 3pg®) + (2 x 3p°q) + (3 x p°) (3.80a)
=3p(¢* +2pg +p*) = 3p (¢ +p)* = 3p. (3.80b)

Similarly, the second moment n2 of the distribution is given by

n2 = (0x ¢*) + (1 x 3pg®) + (4 x 3p%q) + (9 x p?) (3.81a)
= 3p (¢* + 4pq + 3p*) = 3p(q + 3p)(q + p) (3.81Db)
= 3p (¢ +3p) = (3p)* + 3pg. (3.81c)
Hence o
(n—m)2 =n2 -7 = 3pq. (3.82)
O

The mean magnetization M or the mean number of up spins minus the mean number of down
spins is given by M =[n— (3—7)]=2n—3=6p—3, or M = 3(2p — 1) = 3(p — q) in agreement
with (3.68).

Problem 3.28. Coin flips

The outcome of N coins is identical to N noninteracting spins, if we associate the number of coins
with N, the number of heads with n, and the number of tails with N — n. For a fair coin the
probability p of a head is p = % and the probability of a tailis ¢ = 1 —p = % What is the
probability that in three tosses of a coin, there will be two heads? O

Problem 3.29. One-dimensional random walk

If a drunkard begins at a lamp post and takes IV steps of equal length in random directions, how
far will the drunkard be from the lamp post?” We will consider an idealized example of a random

"The history of the random walk problem is discussed by Montroll and Shlesinger (see the references).
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Figure 3.4: The values of the first few coefficients Wy (n,n’). Each number is the sum of the two
numbers to the left and right above it. This construction is called a Pascal triangle.

walk for which the steps of the walker are restricted to a line (a one-dimensional random walk).
Each step is of equal length a, and at each interval of time, the walker either takes a step to the
right with probability p or a step to the left with probability ¢ = 1 — p. The direction of each
step is independent of the preceding one. Let n be the number of steps to the right, and n’ the
number of steps to the left. The total number of steps is N = n+n’. What is the probability that
a random walker in one dimension has taken three steps to the right out of four steps? O

From the above examples and problems, we see that the probability distributions of nonin-
teracting spins, the flip of a coin, and a simple one-dimensional random walk are identical. These
examples have two characteristics in common. First, in each trial there are only two outcomes, for
example, up or down, heads or tails, and right or left. Second, the result of each trial is indepen-
dent of all previous trials, for example, the drunken sailor has no memory of his or her previous
steps. This type of process is called a Bernoulli process (after the mathematician Jacob Bernoulli,
1654-1705).

Because of the importance of magnetic systems, we will cast our discussion of Bernoulli pro-
cesses in terms of noninteracting spins with spin % The main quantity of interest is the probability
Py (n) which we now calculate for arbitrary N and n. We know that a particular outcome with n

up spins and n’ down spins occurs with probability p"q"/. We write the probability Py(n) as
Py (n) = Wy(n,n') p"q" | (3.83)

where n’ = N —n and Wy (n,n’) is the number of distinct configurations of N spins with n up
spins and n’ down spins. From our discussion of N = 3 noninteracting spins, we already know the
first several values of Wi (n,n’).

We can determine the general form of Wy (n,n’) by obtaining a recursion relation between
Wy and Wy _1. A total of n up spins and n’ down spins out of N total spins can be found by
adding one spin to N — 1 spins. The additional spin is either
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(a) up if there are already (n — 1) up spins and n’ down spins, or

(b) down if there are already n up spins and (n’ — 1) down spins.

Because there are Wy (n—1,n’) ways of reaching the first case and Wy (n,n’ — 1) ways of reaching
the second case, we obtain the recursion relation

Wy (n,n')=Wy_1(n—1,n") + Wy_1(n,n —1). (3.84)

If we begin with the known values Wy(0,0) = 1, W1 (1,0) = W7(0,1) = 1, we can use the recursion
relation (3.84) to construct Wy (n,n’) for any desired N. For example,

Wa(2,0) = Wi(1,0) + Wi (2,-1) =14+0=1 (3.85a)
Wy(1,1) = Wi(0,1) + Wi (1,0) =1+1=2. (3.85b)
W(0,2) = Wi (—1,2) + W1(0,1) = 0 + 1. (3.85¢)

In Figure 3.4 we show that Wy (n,n’) forms a pyramid or (a Pascal) triangle.
It is straightforward to show by induction that the expression
N! N!

Tnlnl nl(N —n)!

W (n,n') (3.86)

satisfies the relation (3.84). Note the convention 0! = 1. We can combine (3.83) and (3.86) to find
the desired result

N!
Pyn(n) = ' prgv (binomial distribution) (3.87)

n! (N —n)

The form (3.87) is the binomial distribution. Note that for p = ¢ = 1/2, Py(n) reduces to

N' 27N

Pr(n) = n! (N —n)!

(3.88)

The probability Py(n) is shown in Figure 3.5 for N = 64.

Problem 3.30. Binomial distribution

(a) Calculate the probability Py (n) that n spins are up out of a total of N for N =4 and N = 16
and put your results in a table. Calculate the mean values of n and n? using your tabulated
values of Py (n). It is possible to do the calculation for general p and ¢, but choose p = ¢ = 1/2
for simplicity. Although it is better to first do the calculation of Py (n) by hand, you can use
the program Binomial.

(b) Use program Binomial to plot Py(n) for larger values of N. Assume that p = ¢ = 1/2. De-
termine the value of n corresponding to the maximum of the probability and visually estimate
the width for each value of V. What is your measure of the width? One measure is to use the
value of n at which Py (n) is equal to half its value at its maximum. What is the qualitative
dependence of the width on N7 Also compare the relative heights of the maximum of Py for
increasing values of V.
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Figure 3.5: The binomial distribution Pgs(n) for p = ¢ = 1/2. What is your visual estimate of the
width of the distribution?

(c¢) Program Binomial also plots Py (n) versus n/m. Does the width of Py(n) appear to become
larger or smaller as N is increased?

(d) Plot In Py(n) versus n for N = 16. (Choose Log Axes under the Views menu.) Describe the
qualitative dependence of In Py(n) on n. Can In Py(n) be fitted to a parabola of the form
A+ B(n—m)?, where A and B are fit parameters? O

Problem 3.31. Asymmetrical distribution

(a) Plot Py (n) versus n for N = 16 and p = 2/3. For what value of n is Py(n) a maximum? How
does the width of the distribution compare to what you found in Problem 3.307

(b) For what values of p and ¢ do you think the width is a maximum for a given N? O

Example 3.18. Show that the expression (3.87) for Py(n) satisfies the normalization condition
(3.2).

Solution. The reason that (3.87) is called the binomial distribution is that its form represents a

typical term in the expansion of (p + ¢)". By the binomial theorem we have
N
N!
N n N—n
= _ . 3.89
(p+4q) ;n!w_n)!p q (3.89)
We use (3.87) and write
N N N
Py(n)=Y ————p"¢" " = N=1N=1 3.90
HZ:;) V() ;n!(N_n)!pq (p+4q) 7 (3.90)
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where we have used (3.89) and the fact that p 4+ ¢ = 1. O

Mean value. We now find an analytical expression for the dependence of the mean number of up
spins m on N and p. From the definition (3.13) and (3.87) we have

= - - N! n _N-—n
n:ZnPN(n):Znﬁp g " (3.91)
n=0 n ’ ’

We evaluate the sum in (3.91) by using a technique that is useful in a variety of contexts.® The
technique is based on the fact that

d
—p" =np". 3.92
P = (3.92)
We use (3.92) to rewrite (3.91) as
N
N! 0 N
n= ——(p=—p" " 3.93
" ;n! (N—n)!(papp Ja (3.93)

We have used a partial derivative in (3.93) to remind us that the derivative operator does not act
on ¢, which we have temporarily assumed to be an independent variable. We interchange the order
of summation and differentiation in (3.93) and write

— 0 ad N! n, N—n

n_pa_p{gin!(ﬁf—n)!p q (3.94a)
_ 90 N
=Py, (r+a)", (3.94b)

Because the operator acts only on p, we have
n=pNp+q~ " (3.95)

The result (3.95) is valid for arbitrary p and ¢, and hence it is applicable for p + ¢ = 1. Thus our
desired result is
7i = pN. (3.96)

The nature of the dependence of @ on N and p should be intuitively clear. Compare the general
result (3.96) to the result (3.80b) for N = 3. What is the dependence of n’ on N and p?

Relative fluctuations. To determine An2 we need to know n? (see the relation (3.21)). The

8The integral fooox” e 9% for @ > 0 is evaluated in Appendix A using a similar technique.
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average value of n? can be calculated in a manner similar to that for 7. We write

N
n2 = ;nQn!(NL!—n)! prgN (3.97a)
N 2
_ Z:: o (p (]éw ; (v ;p) prg (3.97b)
) S e
- ( 82) [PN(p+ )V ] (3.97d)
=p[N(p+ 9" " +pN(N - D)(p+)"V 2. (3.97¢)

Because we are interested in the case p + ¢ = 1, we have

n2 =p[N +pN(N —1)] (3.98a)
=p[pN*+ N(1 =p)] = (pN)* +p (1 —p)N (3.98D)
=72 + pgN, (3.98¢)

where we have used (3.96) and substituted ¢ = 1 —p. Hence, from (3.98¢) we find that the variance
of n is given by

0,2 = (An)2 =n2 —7? = pgN. (3.99)
Problem 3.32. Width of the binomial distribution

Compare the calculated values of o, from (3.99) with your estimates in Problem 3.30 and to the
exact result (3.82) for N = 4. Explain why o, is a measure of the width of Py(n). O

The relative width of the probability distribution of n is given by (3.96) and (3.99)

U_n,W,(z)WL
n  pN  \p/ N’

(3.100)

We see that the relative width goes to zero as 1/+v/N.

Frequently we need to evaluate In N! for N > 1. An approximation for In N! known as
Stirling’s approzimation is’

1
InN!'~NInN - N + 3 In(27N). (Stirling’s approximation) (3.101)

In some contexts we can neglect the logarithmic term in (3.101) and use the weaker approximation
InN!'~NInN — N. (3.102)

A derivation of Stirling’s approximation is given in Appendix A.

91t is more accurate to call it the De Moivre-Stirling approximation because de Moivre had already found that
n! & cy/nn™ /e™ for some constant c. Stirling’s contribution was to identify the constant ¢ as v/27.
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Problem 3.33. Range of applicability of Stirling’s approximation

(a) What is the largest value of In N! that you can calculate exactly using your calculator?

(b) Compare the approximations (3.101) and (3.102) to each other and to the exact value of In N!
for N =5, 10, 20, and 50. If necessary, compute In N! using the relation

N
InN!'= " Inm. (3.103)
m=1

Put your results in a table. What is the percentage error of the two approximations for N = 507

(c) Use Stirling’s approximation to show that

d
. Inz! =Inzx for z > 1. (3.104)
x

Problem 3.34. Density fluctuations

A container of volume V' contains N molecules of a gas. We assume that the gas is dilute so that
the position of any one molecule is independent of all other molecules. Although the density is
uniform on the average, there are fluctuations in the density. Divide the volume V into two parts
Vi and Vo with V = V; + V5.

(a) What is the probability p that a particular molecule is in the volume V47

(b) What is the probability that N7 molecules are in V4 and N2 molecules are in V,, where N =
Ny + Ny?

(c) What is the average number of molecules in each part?

(d) What are the relative fluctuations of the number of molecules in each part? O

Problem 3.35. Random walk

Suppose that a random walker takes n steps to the right and n’ steps to the left for a total of N
steps. Each step is of equal length a and the probability of a step to the right is p. Denote = as
the net displacement of a walker after N steps. What is the mean value T for a N-step random
walk? What is the N-dependence of the variance (Ax)2? O

Problem 3.36. Monte Carlo simulation of a one-dimensional random walk

The program RandomWalk1D simulates a random walk in one dimension. A walker starts at the
origin and takes IV steps. At each step the walker goes to the right with probability p or to the left
with probability ¢ = 1 — p. Each step is the same length and independent of the previous steps.
What is the displacement of the walker after N steps? Are some displacements more likely than
others?

We can simulate a N-step walk by the following pseudocode:
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do istep = 1,N
if (rnd <= p) then
x =x + 1
else
x =x -1
end if
end do

The function rnd generates a random number between zero and one. The quantity z is the net
displacement after N steps assuming that the steps are of unit length.

We average over many walkers (trials), where each trial consists of a N step walk and construct
a histogram for the number of times that the displacement z is found for a given number of walkers.
The probability that the walker is a distance x from the origin after N steps is proportional to the
corresponding value of the histogram. This procedure is called Monte Carlo sampling.'®

(a) Is the value of x for one trial of any interest?” Why do we have to average over many trials?

(b) Will we obtain the exact answer for the probability distribution by doing a Monte Carlo
simulation?

(¢) Describe the changes of the histogram for larger values of N and p = 1/2.

(d) What is the most probable value of = for p = 1/2 and N = 16 and N = 327 What is the
approximate width of the distribution? Estimate the width visually. One way to do so is to
determine the value of x at which the value of the histogram is one-half of its maximum value.
How does the width change as a function of N for fixed p?

(e) Choose N =4 and p = 1/2. How does the histogram change, if at all, as the number of walks
increases for fixed N7 O

The binomial distribution for large N. In Problem 3.30 we found that the binomial distri-
bution has a well-defined maximum and can be approximated by a smooth, continuous function
for large IV even though only integer values of n are possible. We now find the form of this n
dependence.

The first step is to realize that Py (n) for N > 1 is a rapidly varying function of n near the
maximum of Py (n) at 7 = pN. For this reason we do not want to approximate Py(n) directly.
Because the logarithm of Py (n) is a slowly varying function (see Problem 3.30), we expect that the
Taylor series expansion of In Py(n) will converge. Hence, we expand In Py(n) in a Taylor series
about the value of n =7 at which In Py (n) reaches its maximum value. We have

dln Py (n)

| 5 d*1n Py (n)
dn n=n

InPy(n) =InPy(n=n)+(n—n) +%(n—ﬁ) o n:ﬁ—l—”- (3.105)

Because the expansion (3.105) is about the maximum n = 7, the first derivative dIn Py (n)/dn‘n:ﬁ
must be zero and the second derivative d In Py (n)/dn?| __ must be negative. We assume that

10The name “Monte Carlo” was first used in by Nicholas Metropolis and Stanislaw Ulam in “The Monte Carlo
method,” Journal of the American Statistical Association 44 (247), 335-341 (1949).
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the higher terms in (3.105) can be neglected (see Problem 3.76) and adopt the notation

InA =1nPy(n=n), (3.106)
and
d?*1n Py (n)
p=-S (3.107)

The approximation (3.105) and the notation in (3.106) and (3.107) allows us to write

1
In Py(n) ~In A — 5B(n —n)?, (3.108)

or
~\2

Py(n) ~ Ae 3B0—2)°, (3.109)

We next use Stirling’s approximation (3.101) to evaluate the first two derivatives of In Py (n)
to find the parameters B and n. We first take the logarithm of both sides of (3.87) and obtain

InPy(n)=InN!—Inn! —In(N —n)! +nlnp+ (N —n)Ing. (3.110)
It is straightforward to use the approximation (3.104) to obtain

d(In Py (n))

y =—Ilnn+In(N—-n)+Inp—Ing. (3.111)
n

The most probable value of n is found by finding the value of n that satisfies the condition
dIn Py (n)/dn = 0. We find

N_#
-1 (3.112)
n p

or (N —n)p = ng. The relation p + ¢ = 1 allows us to write
7= pN, (3.113)

as expected. Note that 7 = 7, that is, the value of n for which Py(n) is a maximum is also the
mean value of n.

The second derivative can be found from (3.111). We have

d*(In Py (n)) 1 1
— = —— — . 3.114
dn? n N-n ( )
Hence, the coefficient B defined in (3.107) is given by
d*In Py (n) 1 1 1
B—_ ! S 3.115
dn? n=i 7 + N—-n  Npq ( )
From the relation (3.99) we see that
1
B=— (3.116)

o2’
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where o2 is the variance of n. In Problem 3.37 you will be asked to show that the coefficient A in
(3.107) can be approximated for large N as
1 1

A= N = @i (3.117)

We thus find the form of the Gaussian probability distribution

1 _
Py(n) = e~ (n=m)?*/20% (Gaussian probability distribution) (3.118)

V2mo?

An alternative derivation of the parameters A, 71, and B is given in Problem 3.72.

Problem 3.37. Calculation of the normalization constant

Derive the form of A in (3.117) using Stirling’s approximation (3.101). Note that the weaker form

of Stirling’s approximation in (3.102) yields the incorrect result that In A = 0. O
n | Pip(n) Gaussian approximation
0 | 0.000977 0.001700
1 | 0.009766 0.010285
2 | 0.043945 0.041707
3| 0.117188 0.113372
4 | 0.205078 0.206577
5 | 0.246094 0.252313

Table 3.4: Comparison of the exact values of Pjg(n) with the Gaussian probability distribution
(3.118) for p=q =1/2.

From our derivation we see that (3.118) is valid for large values of N and for values of n near
m. The Gaussian approximation is a good approximation even for relatively small values of N for
most values of n. A comparison of the Gaussian approximation to the binomial distribution is
given in Table 3.4. A discussion of the accuracy of the Gaussian approximation to the binomial
distribution is given in Problem 3.76.

The most important feature of the Gaussian probability distribution is that its relative width,
0, /7, decreases as N~'/2. The binomial distribution also shares this feature. The alternate
derivation of the Gaussian probability distribution in Problem 3.72 shows why the binomial and
Gaussian distributions have the same mean and variance.

3.6 Continuous Probability Distributions

In many cases of physical interest the random variables have continuous values. Examples of
continuous variables are the positions of the holes left by darts thrown at a dart board, the position
and velocity of a particle described by classical mechanics, and the angle of a compass needle.
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Figure 3.6: The angle 6 is an example of a continuous random variable.

As an example, consider a spinner, the equivalent of a wheel of fortune,'! with an arrow that

spins around and stops at some angle at random (see Figure 3.6). In this case the variable 0 is a
continuous random variable that takes all values in the interval [0,27]. What is the probability
that 0 has a particular value? Because there are an infinite number of possible values of 6 in the
interval [0, 27], the probability of obtaining any particular value of 6 is zero. Thus, we have to
reformulate the question and ask for the probability that the value of 8 is between 6 and 6 + A#6.
In other words, we have to ask for the probability that 6 is in a particular angular range df about
0. For example, the probability that ¢ in Fig. 3.6 is between 0 and 7 is 1/2 and the probability
that 6 is between 0 and /2 is 1/4.

Another example of a continuous random variable is the displacement from the origin of a
one-dimensional random walker that steps at random to the right with probability p, but with a
step length that is chosen at random between zero and the maximum step length a. The continuous
nature of the step length means that the displacement = of the walker is a continuous variable. If
we perform a simulation of this random walk, we can record the number of times H(x) that the
displacement of the walker from the origin after IV steps is in a bin of width Az between z and
x+ Ax. A plot of H(z) as a function of 2 for the bin width Az = 0.5 is shown in Figure 3.7. The
histogram H (x) is proportional to the estimated probability that a walker lies in a bin of width
Az a distance x from the origin after N steps. To obtain the probability, we divide H(x) by the
total number of walkers N,,.

In practice, the choice of the bin width is a compromise. If Ax is too big, the features of the
histogram would be lost. If Az is too small, many of the bins would be empty for a given number
of walkers, and our estimate of the number of walkers in each bin would be less accurate.

Because we expect the number of walkers in a particular bin to be proportional to the width
of the bin, we may write p(z)Az = H(x)/N,,. The quantity p(x) is called the probability density.
In the limit Az — 0, H(x) becomes a continuous function of 2, and we can write the probability
that the displacement z of the walker is between a and b as (see Figure 3.8).

Pla<x<b) —/bp(:zr) dx. (3.119)

' The Wheel of Fortune is an American television game. The name of the show comes from the large spinning
wheel that determines the dollar amounts and prizes won by the contestants.
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Figure 3.7: Histogram H(z) of the number of times that the displacement of a one-dimensional
random walker lies between = and xz 4+ Az after N = 16 steps (see Problem 3.38). The length of
each step is chosen with uniform random probability to be between zero and one. The bin width
is Az = 0.5. The data was generated with 1000 trials, a relatively small number. The results of
this set of trials are the estimates Z = —0.045 and 22 = 4.95.
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Figure 3.8: The probability that x is between a and b is equal to the shaded area.

Note that the probability density p(x) is nonnegative and has units of one over the dimension of
length.



CHAPTER 3. CONCEPTS OF PROBABILITY 143

The formal properties of the probability density p(z) can be generalized from the discrete
case. For example, the normalization condition is given by

/:)O p(x)dx = 1. (3.120)

The mean value of the function f(x) is given by

f :/_OO f(z)p(z)de. (3.121)

Problem 3.38. Simulation of a one-dimensional random walk with variable step length

The program RandomWalk1DContinuous simulates a random walk in one dimension with a variable
step length.

(a) The step length is generated at random with a uniform probability between 0 and 1. Calculate
the mean displacement and its variance for one step.

(b) Compare your analytical results from part (a) to the results of the simulation for N = 1.

(¢) How does the variance of the displacement found in the simulation for N = 16 depend on the
variance of the displacement for N = 1 that you calculated in part (a)?

(d) Explore how the histogram changes with the bin width. What is a reasonable choice of the
bin width for N = 1007 O

Problem 3.39. Exponential probability density
The random variable x has the probability density

JAe® (0<2 <o)
plx) = {0 (z<0). (3.122)

The exponential probability density plays an important role in statistical mechanics (see (4.79),
page 201).

(a) Determine the normalization constant A in terms of A.
(

b) What is the mean value of 7 What is the most probable value of =7

(
d

)
)
¢) What is the mean value of 2%?
) Determine the probability for A = 1 that a measurement of x yields a value between 1 and 2.
)

(e) Determine the probability A = 1 that a measurement of z yields a value less than 0.3. O
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Problem 3.40. Probability density for velocity

Consider the probability density function p(vy) = (a/7)3/2 e~ for the velocity of a particle in the
x-direction. The probability densities for v, and v, have the same form. Each of the three velocity
components can range from —oo to 400 and a is a constant. This form of the probability density
for the velocity will be derived in Section 6.2.2 for a classical system of particles at temperature T'.

(a) Show that p(v) is normalized to one. Use the fact that (see (A.15))

e 1
/ e du = —\/f. (3.123)
0 2 a

Note that this calculation involves doing three similar integrals that can be evaluated sepa-
rately.

(b) What is the probability that a particle has a velocity between v, and v, +dv,, v, and vy +dv,,
and v, and v, + dv,?

(c) What is the probability that v, > 0, vy > 0, v, > 0 simultaneously? O

Problem 3.41. Gaussian probability density
(a) Find the first four moments of the Gaussian probability density

p(x) = (20) V22 (—oo <z < 0) (3.124)
(b) Calculate the value of Cy, the fourth-order cumulant, defined by

Cr=2% — 4237 — 322 + 12277 — 63, (3.125)

Problem 3.42. Uniform probability distribution
Consider the probability density given by

_J@2a)™t (2] <)
p(z) = {0 (2] > a) (3.126)

(a) Sketch the dependence of p(z) on z.
(b) Find the first four moments of p(z).

(¢) Calculate the value of the fourth-order cumulant Cy defined in (3.125)) for the probability
density in (3.126). Compare your result to the corresponding result for Cy for the Gaussian
distribution. O
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Problem 3.43. Other probability distributions

Not all probability densities have a finite variance as you will find in the following.

(a) Sketch the Lorentz or Cauchy distribution given by

1 gl
= . — 3.127
po) = re—y (w<w<) (3127)
Choose a = 0 and v = 1 and compare the form of p(z) in (3.127) to the Gaussian distribution
given by (3.124).

(b) Calculate the first moment of the Lorentz distribution assuming that ¢ = 0 and v = 1.

(¢) Does the second moment exist? O

3.7 The Central Limit Theorem (or Why Thermodynamics
Is Possible)

We have discussed how to estimate probabilities empirically by sampling, that is, by making
repeated measurements of the outcome of independent random events. Intuitively we believe that
if we perform more and more measurements, the calculated average will approach the exact mean
of the quantity of interest. This idea is called the law of large numbers. However, we can go further
and find the form of the probability distribution that a particular measurement differs from the
exact mean. The form of this probability distribution is given by the central limit theorem. We
first illustrate this theorem by considering a simple example.

Suppose that we wish to estimate the probability of obtaining the face with five dots in one
throw of a die. The answer of % means that if we perform N measurements, five will appear
approximately N/6 times. What is the meaning of approximately? Let S be the total number of

times that a five appears in [N measurements. We write

N
S=> s, (3.128)

i=1

where
1, if the ith throw gives a 5

Si = ) (3.129)
0 otherwise.

The ratio S/N approaches 1/6 for large N. How does this ratio approach the limit? We can
empirically answer this question by repeating the measurement M times. (Each measurement of S
consists of N throws of a die.) Because S itself is a random variable, we know that the measured
values of S will not be identical. In Figure 3.9 we show the results of M = 10,000 measurements
of S for N =100 and N = 800. We see that the approximate form of the distribution of values of
S is a Gaussian. In Problem 3.44 we calculate the absolute and relative width of the distributions.

Problem 3.44. Analysis of Figure 3.9
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(a) Estimate the absolute width and the relative width AS/S of the distributions shown in Fig-
ure 3.9 for N =100 and N = 800.

(b) Does the error of any one measurement of S decrease with increasing N as expected?

(¢) How would the plot change if the number of measurements M were increased to M = 100, 0007
O

In Section 3.11.2 we show that in the limit N — oo, the probability density p(S) is given by

1

p(S) = o= e~ (5=95)%/20% (central limit theorem) (3.130)
V27mod
where
S=Ns (3.131)
o2 = No®, (3.132)

with ¢ = 52 — 52, The quantity p(S)AS is the probability that the value of the sum Zil s; 1s
between S and S+ AS. Equation (3.130) is equivalent to the central limit theorem. Note that the
Gaussian form in (3.130) holds only for large N and for values of S near its most probable (mean)
value. The latter restriction is the reason that the theorem is called the central limit theorem; the
requirement that N be large is the reason for the term limit.

The central limit theorem is one of the most remarkable results of the theory of probability.
In its simplest form the theorem states that the probability distribution of the value of the sum
of a large number of random variables is approximately a Gaussian. The approximation improves

as the number of variables in the sum increases. For the throw of a die we have 5 = %, s2 = %,
and 02 =2 —35% =1 — L =2 For N throws of a die, we have S = N/6 and 0% = 5N/36. We

see that in this example the most probable relative error in any one measurement of S decreases
as 05/S = +/5/N.

If we let S represent the displacement of a walker after N steps and let 02 equal the mean
square displacement of a single step, then the central limit theorem implies that the probability
density of the displacement is a Gaussian which is equivalent to the results that we found for random
walks in the limit of large N. Or we can let S represent the magnetization of a system of spins and
obtain similar results. The displacement of a random walk after N steps and the magnetization of
a system of spins are examples of a random additive process. Hence, the probability distribution for
random walks, spins, and multiple coin tosses is given by (3.130), and our task reduces to finding
expressions for 3 and o2 for the particular process of interest.

Problem 3.45. Central limit theorem

Use program CentrallimitTheorem to test the applicability of the central limit theorem.

(a) Assume that the variable s; is uniformly distributed between 0 and 1. Calculate analytically
the mean and standard deviation of s and compare your numerical results with your analytical
calculation.
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Figure 3.9: The distribution of the measured values of M = 10,000 different measurements of the
sum S for N = 100 and N = 800 terms in the sum. The quantity S is the number of times that
face 1 appears in N throws of a die. For N = 100, the measured values are S = 16.67, 52 = 291.96,
and og = 3.74. For N = 800, the measured values are S = 133.31, S2 = 17881.2, and og = 10.52.
What is the estimated value of the relative width for each case?

(b)

Use the default value of N = 12, the number of terms in the sum, and describe the qualitative
form of p(S), where p(S)AS is the probability that the sum S is between S and S+ AS. Does
the qualitative form of p(S) change as the number of measurements (trials) of S is increased
for a given value of N7

What is the approximate width of p(S) for N = 12?7 Describe the changes, if any, of the width
of p(S) as N is increased. Increase N by at least a factor of 4. Do your results depend strongly
on the number of measurements?

To determine the generality of your results, consider the probability density f(s) = e™* for
s > 0 and answer the same questions as in parts (a)—(c).

Consider the Lorentz distribution f(s) = (1/7)(1/(s* + 1), where —0o < s < co. What is the
mean value and variance of s? Is the form of p(S) consistent with the results that you found
in parts (b)—(d)?

Each value of S can be considered to be a measurement. The sample variance 6% is a measure
of the square of the differences of the result of each measurement and is given by

5% = 1 Z(Si —-9)2 (3.133)

The reason for the factor of N — 1 rather than N in the definition of 6% is that to compute it,
we need to use the N values of s to compute the mean of S, and thus, loosely speaking, we
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have only N — 1 independent values of s remaining to calculate 6%. Show that if N > 1, then

~ .. . . =5 &2
0s =~ og, where the standard deviation og is given by U% =525,

(g) The quantity s is known as the standard deviation of the means. That is, g is a measure of
how much variation we expect to find if we make repeated measurements of S. How does the
value of 6g compare to your estimated width of the probability density p(S)? O

The central limit theorem shows why the Gaussian probability density is ubiquitous in nature.
If a random process is related to a sum of a large number of microscopic processes, the sum will be
distributed according to the Gaussian distribution independently of the nature of the distribution
of the microscopic processes.!?

The central limit theorem implies that macroscopic bodies have well defined macroscopic
properties even though their constituent parts are changing rapidly. For example, the particle
positions and velocities in a gas or liquid are continuously changing at a rate much faster than a
typical measurement time. For this reason we expect that during a measurement of the pressure
of a gas or a liquid, there are many collisions with the wall and hence the pressure, which is a sum
of the pressure due to the individual particles, has a well defined average. We also expect that the
probability that the measured pressure deviates from its average value is proportional to N—1/2,
where N is the number of particles. Similarly, the vibrations of the molecules in a solid have a
time scale much smaller than that of macroscopic measurements, and hence the pressure of a solid
also is a well-defined quantity.

Problem 3.46. Random walks and the central limit theorem

Use the central limit theorem to find the probability that a one-dimensional random walker has a
displacement between x and = + dz. (There is no need to derive the central limit theorem.) O

3.8 *The Poisson Distribution or Should You Fly?

We now return to the question of whether or not it is safe to fly. If the probability of a plane
crashing is p = 5 x 1075, then 1 — p is the probability of surviving a single flight. The probability
of surviving N flights is then Py = (1 — p). For N = 1000, Py ~ 0.995, and for N = 5 x 10°,
Py ~ 0.82. Thus, our intuition is verified that if we took 1000 flights, we would have only a small
chance of crashing.

This type of reasoning is typical when the probability of an individual event is small, but
there are very many attempts. Suppose we are interested in the probability of the occurrence of n
events out of N attempts given that the probability p of the event for each attempt is very small.
The resulting probability is called the Poisson distribution, a distribution that is important in the
analysis of experimental data. We discuss it here because of its intrinsic interest.

One way to derive the Poisson distribution is to begin with the binomial distribution:

P(n) = MNL!_H)!I)”O —-p)N (3.134)

12We will state the central limit theorem more carefully in Section 3.11.2 and note that the theorem holds only
if the second moment of the probability distribution of the individual terms in the sum is finite.
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We will suppress the N dependence of P. As we have done previously, we will approximate In P(n)
rather than P(n) directly. We first show that the term n!/(N —n)! can be approximated by N in
the limit N > n. We use Stirling’s approximation (3.101) (neglecting the logarithmic correction)
to write

N!

In N =InN!—In(N —n)! (3.135a)
~NInN-X—(N—-—n)ln(N—n)+X —n (3.135b)
~ NN — NV 4+ nln N (3.135c¢)
=nlnN. (3.135d)

We next write In(1 —p)(N=") = (N —n)In(1 — p) = —(N —n)p ~ —Np, and hence ¢V " ~ e PV,
We then combine these approximations to obtain

,\,1 nn—N_(Np)n—N
P(n) m —N"pte#" = —— e P, (3.136)
or
P(n) = n—'e_ﬁ (Poisson distribution) (3.137)
n!

where m = pN. The form (3.137) is the Poisson distribution (see Figure 3.10).

Let us apply the Poisson distribution to the airplane survival problem. We want to know the
probability of never crashing, that is, P(n = 0). The mean N = pN equals 1075 x 400 = 0.004 for
N = 400 flights and N = 1 for N = 10° flights. Thus, the survival probability is P(0) = e™V ~
0.996 for N = 400 and P(0) ~ 0.368 for N = 10° as we calculated previously. We see that if we
fly 100,000 times, we have a much larger probability of dying in a plane crash.

Problem 3.47. Poisson distribution

(a) Show that the Poisson distribution is properly normalized, and calculate the mean and variance
of n (see (A.5)). Because P(n) for n > N is negligibly small, you can sum P(n) from n = 0 to
n = oo even though the maximum value of n is N.

(b) Plot the Poisson distribution P(n) as a function of n for p = 0.01 and N = 100. O

3.9 *Traffic Flow and the Exponential Distribution

The Poisson distribution is closely related to the exponential distribution as we will see in the
following. Consider a sequence of similar random events which occur at times t1, to, .... Examples
of such sequences are the times that a Geiger counter registers a decay of a radioactive nucleus
and the times of an accident at a busy intersection. Suppose that we determine the sequence over
a very long time T that is much greater than any of the intervals 7, = ¢; — ¢,_1. We also suppose
that the mean number of events is A\ per unit time so that in the interval 7, the mean number of
events is A7. We also assume that the events occur at random and are independent of each other.
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Figure 3.10: Plot of the Poisson probability distribution for p = 0.0025 and N = 1000.

We wish to find the probability w(7)dr that the interval between events is between T and
7+ dr. If an event occurred at ¢ = 0, the probability that at least one other event occurs within
the interval [0, 7] is

/Tw(T/) dr'. (3.138)
0

The probability that no event occurs in this interval is

1 —/O w(r’)dr'. (3.139)

Another way of thinking of w(7) is that it is the probability that no event occurs in the interval
[0, 7] and then an event occurs within [r, 7 + A7]. Thus,

w(T)AT = probability that no event occurs in the interval [0, 7]

x probability that an event definitely occurs in the interval [r, 7 + A7]
=1 —/ w(r')dr' | AAT. (3.140)
0

If we cancel A7 from each side of (3.140) and differentiate both sides with respect to 7, we find

d
&=, (3.141)
dr
so that
w(r) = Ae 7, (3.142)

The constant of integration A is determined from the normalization condition:

/ w(r)dr' =1= A/ e M dr' = A/X (3.143)
0 0
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Hence, w(7) is the exponential function
w(T) = Xe . (3.144)

These results for the exponential distribution lead naturally to the Poisson distribution. Let
us divide the interval T > 1 into n smaller intervals 7 = T'/n. What is the probability that 0, 1,
2, 3, ... events occur in the interval 77 We will show that the probability that n events occur in
the time interval 7 is given by the Poisson distribution:

Py(r) = Q)" e, (3.145)

n!

where we have set m = A7 in (3.137). We first consider the case n = 0. If n = 0, the probability
that no event occurs in the interval 7 is (see (3.140))

P,—o(r)=1 —/ w(t')dr' =1-— /\/ e M dr! = e M. (3.146)
0 0

For n = 1 there is exactly one event in time interval 7. This event must occur at some time
7/. If it occurs at 7/, then no other event can occur in the interval [7/,7] (otherwise n would not
equal 1). Thus, we have

Proi(7) —/OTw(T’)Pn_O(T —7')dr (3.147a)
— /0 " AN A=) dr', (3.147b)

where we have used (3.146) with 7 — (7 — 7/). Hence,
Py (1) = /0 AN = (AT)e 7. (3.148)

If n events are to occur in the interval [0, 7], the first must occur at some time 7/ and exactly
(n — 1) must occur in the time (7 — 7/). Hence,

Po(r) = /0 N Py (r— ) dr. (3.149)

Equation (3.149) is a recurrence formula that can be used to derive (3.145) by induction. It is
easy to see that (3.145) satisfies (3.149) for n = 1. As is usual when solving recursion formulas by
induction, we assume that (3.145) is correct for (n — 1). We substitute this result into (3.149) and
find

Pu(7) = X" /OT(T (- 1y = O oxr (3.150)

n!

An application of the Poisson distribution is given in Problem 3.48.

*Problem 3.48. Analysis of traffic data

In Table 3.5 we show the number of vehicles passing a marker during a thirty second interval. The
observations were made on a single lane of a six lane divided highway. Assume that the traffic
density is so low that passing occurs easily and no platoons of cars develop.
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N | frequency
0 1
1 7
2 14
3 25
4 31
5 26
6 27
7 14
8 8
9 3

10 4

11 3

12 1

13 0

14 1

> 15 0

Table 3.5: Observed distribution of vehicles passing a marker on a highway in thirty second inter-
vals. The data was taken from page 98 of Montroll and Badger.

(a) Is the distribution of the number of vehicles consistent with the Poisson distribution? If so,
what is the value of the parameter \?

(b) As the traffic density increases, the flow reaches a regime where the vehicles are very close to
one another so that they are no longer mutually independent. Make arguments for the form of
the probability distribution of the number of vehicles passing a given point in this regime. [

3.10 *Are All Probability Distributions Gaussian?

We have discussed random additive processes and found that the probability distribution of their
sum is a Gaussian for a sufficiently large number of terms. An example of such a process is a
one-dimensional random walk for which the displacement x is the sum of N random steps.

We now discuss random multiplicative processes. Fxamples of such processes include the
distributions of incomes, rainfall, and fragment sizes in rock crushing processes.!®> Consider the
latter for which we begin with a rock of size w. We strike the rock with a hammer and generate
two fragments whose sizes are pw and quw, where ¢ = 1 — p. In the next step the possible sizes of
the fragments are pw, pqw, gpw, and ¢?>w. What is the distribution of the fragment sizes after N
blows of the hammer?

To answer this question consider the value of the product of the binary sequence of N elements
in which the numbers z; and x5 appear independently with probabilities p and g respectively. We
write

II = T1X1T2X1TLQ . .« (3151)

13The following discussion is based on an article by Sidney Redner (see the references).
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We ask what is II, the mean value of II? To calculate II we define Py (n) to be the probability
that the product of N independent factors of 21 and x5 has the value z1"x2™¥ ™. This probability
is given by the number of sequences where z1 appears n times multiplied by the probability of
choosing a specific sequence with z; appearing n times. This probability is the familiar binomial
distribution:

N!
Pn(n) = ——p"g" " 3.152
V() = — RET (3.152)
We average over all possible outcomes of the product to obtain its mean value
N
= Z Py(n)[z1"2N "] = (pz1 + qa2) . (3.153)
n=0

The most probable event in the product contains Np factors of z; and Ngq factors of zs.
Hence, the most probable value of the product is

I = (2172, 9)N. (3.154)

To obtain a better feeling for these results we consider some special cases. For x; = 2,
r2 =1/2, and p = ¢ = 1/2 we have Il = (1/4)[23 + 22122 + 23] = (1/4)[4 + 2 + 1/4] = 25/16 for
N = 2; for general N we have Il = (5/4)". In contrast, the most probable value for N = 2 is given
by II = [21/2 x (1/2)/2]2 = 1; the same result holds for any N. For p = 1/3 and ¢ = 2/3 and the
same values of 71 and 25 we find I = 1 for all N and II = [21/3 x (1/2)2/3]2 = 272/3 for N = 2
and 2=NV/3 for any N. We see that Il # 11 for a random multiplicative process. In contrast, the
most probable event is a good approximation to the mean value of the sum of a random additive
process (and is identical for p = q).

The reason for the large discrepancy between I and II is the important role played by rare
events. For example, a sequence of N factors of 1 = 2 occurs with a very small probability, but the
value of this product is very large in comparison to the most probable value. Hence, this extreme
event makes a finite contribution to IT and a dominant contribution to the higher moments II™.

*Problem 3.49. A simple multiplicative process

(a) Confirm the general result in (3.153) for N = 4 by showing explicitly all the possible values of
the product.

(b) Consider the case 71 = 2, 2o = 1/2, p = 1/4, and ¢ = 3/4, and calculate II and L.

(c) Show that the mean value of the mth moment II" = Eﬁfzo P(n) [:rl)"xév_"}m reduces to
(pz)N as m — oo (for x1 > x3). (Hint: Consider the ratio of each term in the sum to the
term with 2™.) This result implies that the mth moment is determined solely by the most

extreme event for m > 1.

(d) Explain why a log-normal distribution for which p(IT) ~ e~(nTI-InTD?*/20% i¢ 4 reasonable guess

for the continuum approximation to the probability of a random multiplicative process for
N > 1. Here IT = ga) =", O
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*Problem 3.50. Simulation of a multiplicative process

(a) Run the program MultiplicativeProcess to simulate the distribution of values of the product
x1"woN ", Choose x1 = 2, x5 = 1/2, and p = ¢ = 1/2. First choose N = 4 and estimate IT
and II. Do your estimated values converge more or less uniformly to the analytical values as
the number of measurements becomes large? Do a similar simulation for N = 40. Compare
your results with a similar simulation of a random walk and discuss the importance of extreme
events for random multiplicative processes.

(b) The average value of a product of random variables is governed by rare events that are at the
tail of the distribution. However, the most probable events will likely dominate in a simulation
of a multiplicative process. As the number of trials increase, there will be an increase in
the number of rare events that are sampled, and we expect that the observed averages will
fluctuate greatly. As the number of trials is increased still further, the number of rare events
will be more accurately sampled, and the observed averages will eventually converge to their
true values. Redner has estimated that the minimum number of trials for this crossover to

occur is given by
N moN2
7" = (- M) , (3.155)
2pq q+ plxy/x2)™
where T is the number of trials and m is the moment of the distribution that we wish to

estimate. How does the estimate of T* in (3.155) compare with the results you observe in the
simulation? O

3.11 *Supplementary Notes

3.11.1 Method of undetermined multipliers

Suppose that we want to maximize the function f(x,y) = xy? subject to the constraint that
22 +y? = 1. One way would be to substitute y? = 1 — 22 and maximize f(z) = z(1 — 22). This
approach works only if f can be reduced to a function of one variable. We first consider this case
as a way of introducing the general method of undetermined multipliers.

Our goal is to maximize f(x,y) = xy? subject to the constraint that g(z,y) = 2> +y*>—1=0.
In the method of undetermined multipliers this problem can be reduced to solving the equation

df — Adg =0, (3.156)

where df = 0 at the maximum of f, dg = 0 because g expresses the constraint, and \ will be
chosen so that (3.156) is satisfied. If we substitute df = y*dz + 2zydy and dg = 2xdx + 2ydy in
(3.156), we obtain

(y? — 2\z)dx + 2(xy — \y)dy = 0. (3.157)

We choose A = 32 /2z so that the first term is zero at the maximum. Because this term is zero, the
second term must also be zero; that is, * = A\ = y?/2z, so = +y/v/2. Hence, from the constraint
g(x,y) =0, we obtain = /1/3 and X = 2.
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More generally, we wish to maximize the function f(z1,22,...,zxN) subject to the constraints
gj(z1,22,...,xn) =0 where j = 1,2,..., M with M < N. The maximum of f is given by

N
Z =0, (3.158)
and the constraints can be expressed as
dg; = Z agﬂd .= 0. (3.159)
=1

As in our example, we can combine (3.158) and (3.159) and write df — Z?il Ajdg; =0, or

ANy dg;
S {8_5 -3 Aja—mdxi =0. (3.160)
N 7 ]:1 2

We are free to choose all M values of \; such that the first M terms in the square brackets are
zero. For the remaining N — M terms, the dz; can be independently varied because the constraints
have been satisfied. Hence, the remaining terms in square brackets must be independently zero,
and we are left with N — M equations of the form

39
8:61 Z i 2L —. (3.161)

In Example 3.11 we were able to obtain the probabilities by reducing the uncertainty S to
a function of a single variable P; and then maximizing S(P;). We now consider a more general
problem where there are more outcomes — a loaded die for which there are six outcomes. Suppose
that we know that the average number of points on the face of a die if 7. We wish to determine
the values of Py, Ps, ..., Ps that maximize the uncertainty S subject to the constraints

M=
[
J—‘

(3.162)
j=1
6
> jPi=n (3.163)
j=1
For a perfect die m = 3.5. We take
= ZP In P (3.164a)
g1 = Z P —1, (3.164b)
j=1

and
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6
g2=> jPj—7. (3.164c)
j=1

We have 0f/OP; = —(1 4+ In P;), 0g1/0P; = 1, and 9g2/0P; = j, and write (3.161) for j =1 and
j=2as

—1+InP)—a—-F=0 (3.165a)
(1+1nP) —a—23=0, (3.165b)

where we have taken « and g (instead of A\; and A2 as the undetermined Lagrange multipliers.
The solution of (3.165) for a and (3 is

a=InP,—2InP -1 (3.166a)
ﬁ = 1nP1 —In Pg. (3166b)

We solve (3.166b) for In P, = In P, — 8 and use (3.166a) to find InP; = —1 — a — 3. We then
use this result to write In P, as In P, = —1 — a — 23. We can independently vary dPs, ..., dPs
because the two constraints are satisfied by the values of P; and P,. Hence, we have from (3.161)
and (3.164) that

P =—1—a-—j3 (3.167)
or
Pj=e 170 P, (3.168)
We eliminate the constant a by the normalization condition (3.162) and write:
o i
Zj e Pi’

The constant /3 is determined by the constraint (3.45):

P; = (3.169)

e P 4+2e728 13730 4 4e7 4P + 5750 4 6P
= . (3.170)
e P e 20 e 30 440 4 55 4 =60

Usually, (3.170) must be solved numerically.

The exponential form (3.169) will become very familiar to us (see (4.79), page 201) and is
known as the Boltzmann distribution. In the context of thermal systems the Boltzmann distribu-
tion maximizes the uncertainty given the constraints that the probability distribution is normalized
and the mean energy is known.

Problem 3.51. Numerical solution of (3.170)

Show that the solution to (3.170) is 5 =0form =7/2, f =+cc forn =1, f§ = —c0 for m = 6,
and = —0.1746 for n = 4. |



CHAPTER 3. CONCEPTS OF PROBABILITY 157

3.11.2 Derivation of the central limit theorem

To discuss the derivation of the central limit theorem, it is convenient to introduce the characteristic
function ¢(k) of the probability density p(z:). The main utility of the characteristic function is that
it simplifies the analysis of the sums of independent random variables. We define ¢(k) as the Fourier

transform of p(x):

B(k) = eikz :/ e*p(x) da. (3.171)

Because p(z) is normalized, it follows that ¢(k = 0) = 1. The main property of the Fourier
transform that we need is that if ¢(k) is known, we can find p(x) by calculating the inverse Fourier
transform:

p(z) 1/we*ik1¢(1€)dk. (3.172)

:%700

Problem 3.52. Characteristic function of a Gaussian

Calculate the characteristic function of the Gaussian probability density. O

One useful property of ¢(k) is that its power series expansion yields the moments of p(z):

o~ k" drg(k)
k) = — 3.173
o =3 1 o (3173)
_ ke ZOO (ik)"m
= etz = D . (3.174)
By comparing coefficients of k™ in (3.173) and (3.174), we see that
.4
T = _’E|k:0' (3.175)
In Problem 3.53 we show that
- d?
2 -T2 = —ozn o(k)|,_, (3.176)

and that certain convenient combinations of the moments are related to the power series expansion
of the logarithm of the characteristic function.

Problem 3.53. The first few cumulants

The characteristic function generates the cumulants C,, defined by

Ing(k) = nij:l (”;#Cn (3.177)
Show that the cumulants are combinations of the moments of x and are given by
Ci=7T (3.178a)
Co=02=22 -7 (3.178b)
Cs =23 — 322F + 27 (3.178¢)
Cy=2% — 4737 — 327 +12227° — 67, (3.1784)
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The first few cumulants were calculated for several probability distributions in Problems 3.41(b)
and 3.42(c). What is the value of Cy for the Gaussian distribution? O

Now let us consider the properties of the characteristic function for the sums of independent
variables. For example, let p1 () be the probability density for the weight x of adult males and let
p2(y) be the probability density for the weight of adult females. If we assume that people marry
one another independently of weight, what is the probability density p(z) for the weight z of an
adult couple? We have that

z=x+y. (3.179)

How do the probability densities combine? The answer is given by

plz) = / p1 (2)p2(y) 6(z — = — y)de dy. (3.180)

The integral in (3.180) represents all the possible ways of obtaining the combined weight z as
determined by the probability density p;(z)p2(y) for the combination of z and y that sums to
z. The form (3.180) of the integrand is known as a convolution. An important property of a
convolution is that its Fourier transform is a simple product. We have

¢- (k) :/e“”p(Z)dz (3.181a)
:/// e p1(2)pa(y)d(z — & — y)dx dy dz (3.181b)
:/e“”pl (:v)d:v/eikypg(y)dy (3.181c)
= ¢1(k)pa2(k). (3.181d)

It is straightforward to generalize this result to a sum of NV random variables. We write

S=z1+z2+...+aN. (3182)
Then

os(k) = [ [ di(k). (3.183)

That is, the characteristic function of the sum of several independent variables is the product of
the individual characteristic functions. If we take the logarithm of both sides of (3.183), we obtain

N
Ings(k) = Ine;(k). (3.184)
i=1

Each side of (3.184) can be expanded as a power series and compared order by order in powers
of tk. The result is that when random variables are added, their associated cumulants also add.
That is, the nth order cumulants satisfy the relation:

CI=CL+C%2+...+CON. (3.185)
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We conclude that if the random variables x; are independent (uncorrelated), their cumulants and
in particular, their variances, add. We saw a special case of this result for the variance in (3.75).

If we denote the mean and standard deviation of the weight of an adult male as w and o
respectively, then from (3.178a) and (3.185) we find that the mean weight of N adult males is
given by Nw. Similarly from (3.178b) we see that the standard deviation of the weight of N adult
males is given by 0% = No2, or oy = V/No,,. Hence, we find the now familiar result that the
sum of N random variables scales as N while the standard deviation scales as v/ N.

We are now in a position to derive the central limit theorem. Let z1, 22, ..., xxy be N mutually
independent variables. For simplicity, we assume that each variable has the same probability
density p(z). The only condition is that the variance o2 of the probability density p(z) must be
finite. For simplicity, we make the additional assumption that T = 0, a condition that always can
be satisfied by measuring x from its mean. The central limit theorem states that the sum S has
the probability density

1 2 2
S) = ———— ¢ F/2No= 3.186
From (3.178b) we see that S2 = N2, and hence the variance of S grows linearly with N. However,
the distribution of the values of the arithmetic mean S/N becomes narrower with increasing N:

2
[rmgeny x_2 .
From (3.187) we see that it is useful to define a scaled sum:
1
Z:\/—N(xl +x2+ ...+ an), (3.188)
and to write the central limit theorem in the form
p(z) = —— =120, (3.189)

To obtain the result (3.189), we write the characteristic function of z as

b=/[]- / (s - [SET2E o) 1900

x p(z1) p(x2) - p(:cN)dz dridxs - - dxy (3.190b)
// / (z1+@otan) /N2 p(z1) p(as2) ... play)dry das - - day (3.190c)
¢(N1/2) ' (3.1904d)

We next take the logarithm of both sides of (3.190d) and expand the right-hand side in powers of
k to find

Ing¢. (k 22 'm),m “m2C,. (3.191)
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The m = 1 term does not contribute in (3.191) because we have assumed that T = 0. More
importantly, note that as N — oo, the higher-order terms are suppressed so that

k2
- (k) — —Cs, (3.192)
or s 9
G (k) — e F /24 (3.193)

Because the inverse Fourier transform of a Gaussian is also a Gaussian, we find that
1 *Z2/202
p(z) = ——e @, (3.194)

The leading correction to ¢(k) in (3.194) gives rise to a term of order N—1/2

not contribute in the limit N — oo.

, and therefore does

The only requirements for the applicability of the central limit theorem are that the various
x; be statistically independent and that the second moment of p(x) exists. It is not necessary
that all the x; have the same distribution. Not all probabilities have a finite second moment as
demonstrated by the Lorentz distribution (see Problem 3.43), but the requirements for the central
limit theorem are weak and the central limit theorem is widely applicable.

Vocabulary

sample space, events, outcome

uncertainty, principle of least bias or maximum uncertainty
probability distribution P(i) or P;, probability density p(x)
mean value 7) , moments, variance Az2, standard deviation o
conditional probability P(A|B), Bayes’ theorem

binomial distribution, Gaussian distribution, Poisson distribution
random walk, random additive processes, central limit theorem
Stirling’s approximation

Monte Carlo sampling

Rare or extreme events, random multiplicative processes

cumulants, characteristic function

Additional problems

Problem 3.54. Probability that a site is occupied

In Figure 3.11 we show a square lattice of 162 sites each of which is occupied with probability p.
Estimate the probability p that a site in the lattice is occupied and explain your reasoning. O
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Figure 3.11: Representation of a square lattice of 16 x 16 sites. The sites are represented by squares.
Each site is either occupied (shaded) independently of its neighbors with probability p or is empty
(white) with probability 1 — p. These configurations are discussed in the context of percolation in
Section 9.3.

Problem 3.55. Three coins (in a fountain)

Three coins are tossed in succession. Assume that landing heads or tails is equiprobable. Find the
probabilities of the following:

(a) the first coin is heads;
(b) exactly two heads have occurred;
(c) not more than two heads have occurred. O

Problem 3.56. A student’s fallacious reasoning

A student tries to solve Problem 3.13 by using the following reasoning. The probability of a double
six is 1/36. Hence the probability of finding at least one double six in 24 throws is 24/36. What
is wrong with this reasoning? If you have trouble understanding the error in this reasoning, try
solving the problem of finding the probability of at least one double six in two throws of a pair of
dice. What are the possible outcomes? Is each outcome equally probable? O

Problem 3.57. d’Alembert’s fallacious reasoning

(a) What is the probability that heads will appear at least once in two tosses of a single coin? Use

the rules of probability to show that the answer is %.

(b) d’Alembert, a distinguished French mathematician of the eighteenth century, reasoned that
there are only 3 possible outcomes: heads on the first throw, heads on the second throw, and
no heads at all. The first two of these three outcomes is favorable. Therefore the probability

that heads will appear at least once is % What is the fallacy in his reasoning? Even eminent

mathematicians (and physicists) have been lead astray by the subtle nature of probability. O
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Problem 3.58. Number of fish in a pond

A farmer wants to estimate how many fish are in a pond. The farmer takes out 200 fish and tags
them and returns them to the pond. After sufficient time to allow the tagged fish to mix with the
others, the farmer removes 250 fish at random and finds that 25 of them are tagged. Estimate the
number of fish in the pond. O

Problem 3.59. Estimating the area of a pond

A farmer owns a field that is 10m x 10m. In the midst of this field is a pond of unknown area.
Suppose that the farmer is able to throw 100 stones at random into the field and finds that 40 of
the stones make a splash. How can the farmer use this information to estimate the area of the
pond? O

Problem 3.60. Monte Carlo integration

Consider the ten pairs of numbers, (z;,y;), given in Table 3.6. The numbers are all in the range
0 < x;,y; < 1. Imagine that these numbers were generated by counting the clicks generated by a
Geiger counter of radioactive decays, and hence they can be considered to be a part of a sequence
of random numbers. Use this sequence to estimate the magnitude of the integral

F:/Old:c\/(l—gﬂ). (3.195)

If you have been successful in estimating the integral in this way, you have found a simple version
of a general method known as Monte Carlo integration.'*

(a) Show analytically that the integral in (3.195) is equal to /4.

(b) Use the program MonteCarloEstimation to estimate the integral (3.195) by Monte Carlo
integration. Determine the error (the magnitude of the deviation from the exact answer) for
trials of n pairs of points equal to n = 10%, 10° and 10%. Does the error decrease with
increasing n on the average?

(c¢) Estimate the integral using n = 1000. Repeat for a total of 10 trials using a different random
number seed each time. The easiest way to do so is to press the Reset button and then press the
Calculate button. The default is for the program to choose a new seed each time based on the
time. Is the magnitude of the variation of your values of the same order as the error between
the average value and the exact value? For a large number of trials, the error is estimated from
the standard error of the mean, which approximately equals the standard deviation divided
by the square root of the number of trials. O

Problem 3.61. Bullseye

A person playing darts hits a bullseye 20% of the time on the average. Why is the probability
of b bullseyes in IV attempts a binomial distribution? What are the values of p and ¢7 Find the
probability that the person hits a bullseye

Monte Carlo methods were first developed to estimate integrals that could not be performed by analytically or
by the usual numerical methods.
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Ti,Yi Ti,Yi
1] 0.984, 0.246 6 | 0.637, 0.581
2 | 0.860, 0.132 71 0.779, 0.218
3 | 0.316, 0.028 8 | 0.276, 0.238
4 | 0.523, 0.542 9 | 0.081, 0.484
51 0.349, 0.623 || 10 | 0.289, 0.032

Table 3.6: A sequence of ten random pairs of numbers.

(a) once in five throws;

(b) twice in ten throws. Why are these probabilities not identical? O

Problem 3.62. Family values

There are 10 children in a given family. Assuming that a boy is as likely to be born as a girl, find
the probability of the family having

(a) 5 boys and 5 girls;
oys an irls.
(b) 3 boys and 7 girl O

Problem 3.63. Fathers and sons (and daughters)

What is the probability that five children produced by the same couple will consist of the following
(assume that the probabilities of giving birth to a boy and a girl are the same):

three sons and two daughters?

(a)
(b) alternating sexes?
(c)
(d)

alternating sexes starting with a son?

all daughters? O

Problem 3.64. Probability in baseball

A good hitter in major league baseball has a batting average of 300, which means that the hitter
will be successful 3 times out of 10 tries on the average. Assume that the batter has 4 times at
bat per game.

(a) What is the probability that he gets no hits in one game?
(b) What is the probability that he will get two hits or less in a three game series?

(¢c) What is the probability that he will get five or more hits in a three game series? Baseball fans
might want to think about the significance of “slumps” and “streaks” in baseball. O

Problem 3.65. Playoff winners
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(a) The World Series in baseball and in the playoffs in the National Basketball Association and the
National Hockey Association, the winner is determined by a best of seven games. That is, the
first team that wins four games wins the series and is the champion. Do a simple statistical
calculation assuming that the two teams are evenly matched and show that a seven game
series should occur 31.25% of the time. What is the probability that the series lasts n games?
More information can be found at <www.mste.uiuc.edu/hill/ev/seriesprob.html> and at
<www.aip.org/isns/reports/2003/080.html>.

(b) Most teams have better records at home. Assume the two teams are evenly matched and each
has a 60% chance of winning at home and a 40% change of winning away. In principle, both
teams should have an equal chance of winning a seven game series. Determine which pattern of
home games is closer to giving each team a 50% chance of winning. Consider the two common
patterns: (1) 2 home, 3 away, 2 home; and (2) 2 home, 2 away, 1 home, 1 away, 1 home. O

Problem 3.66. Galton board

The Galton board (named after Francis Galton (1822-1911)), is a triangular array of pegs. The
rows are numbered 0, 1, ... from the top row down such that row n has n+ 1 pegs. Suppose that a
ball is dropped from above the top peg. Each time the ball hits a peg, it bounces to the right with
probability p and to the left with probability 1 — p, independently from peg to peg. Suppose that
N balls are dropped successively such that the balls do not encounter one another. How will the
balls be distributed at the bottom of the board? Links to applets that simulate the Galton board
can be found in the references. |

Problem 3.67. The birthday problem

What if somebody offered to bet you that at least two people in your physics class had the same
birthday? Would you take the bet?

(a) What are the chances that at least two people in your class have the same birthday? Assume
that the number of students is 25.

(b) What are the chances that at least one other person in your class has the same birthday as
you? Explain why the chances are less in this case than in part (a). O

Problem 3.68. A random walk down Wall Street

Many analysts attempt to select stocks by looking for correlations in the stock market as a whole
or for patterns for particular companies. Such an analysis is based on the belief that there are
repetitive patterns in stock prices. To understand one reason for the persistence of this belief do
the following experiment. Construct a stock chart (a plot of stock price versus time) showing the
movements of a hypothetical stock initially selling at $50 per share. On each successive day the
closing stock price is determined by the flip of a coin. If the coin toss is a head, the stock closes 1/2
point ($0.50) higher than the preceding close. If the toss is a tail, the price is down by 1/2 point.
Construct the stock chart for a long enough time to see “cycles” and other “patterns” appear.
A sequence of numbers produced in this manner is identical to a random walk, yet the sequence
frequently appears to be correlated. The lesson of the charts is that our eyes look for patterns even
when none exists. O

Problem 3.69. Displacement and number of steps to the right


<www.mste.uiuc.edu/hill/ev/seriesprob.html>
http://www.mste.uiuc.edu/hill/ev/seriesprob.html
<www.aip.org/isns/reports/2003/080.html>
http://www.aip.org/isns/reports/2003/080.html
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(a) Suppose that a random walker takes N steps of unit length with probability p of a step to the
right. The displacement m of the walker from the origin is given by m = n —n’, where n is the
number of steps to the right and n’ is the number of steps to the left. Show that m = (p—q)N
and o2, = (m —m)? = 4Npq.

(b) The result (3.78) for (AM)? differs by a factor of four from the result for o2 in (3.99). Why? O

Problem 3.70. Watching a drunkard

A random walker is observed to take a total of IV steps, n of which are to the right.

(a) Suppose that a curious observer finds that on ten successive nights the walker takes N = 20
steps and that the values of n are given successively by 14, 13, 11, 12, 11, 12, 16, 16, 14,
8. Calculate 7, n2, and o,,. You can use this information to make two estimates of p, the
probability of a step to the right. If you obtain different estimates for p, which estimate is
likely to be the most accurate?

(b) Suppose that on another ten successive nights the same walker takes N = 100 steps and that
the values of n are given by 58, 69, 71, 58, 63, 53, 64, 66, 65, 50. Calculate the same quantities
as in part (a) and use this information to estimate p. How does the ratio of o, to m compare
for the two values of N7 Explain your results.

(¢) Calculate m and o,,, where m = n —n/ is the net displacement of the walker for parts (a) and

(b).

This problem inspired an article by Zia and Schmittmann (see the references). O

Problem 3.71. Consider the binomial distribution Py(n) for N =16 and p = ¢ = 1/2.

(a) What is the value of Py(n) at n =n — 0,7

(b) What is the value of the product Py(n =7)(20,)? O

Problem 3.72. Alternative derivation of the Gaussian distribution

On page 138 we evaluated the binomial probability Py(n) using Stirling’s approximation to de-
termine the parameters A, B, and 7 in (3.109). Another way to determine these parameters is to
approximate the binomial distribution by a Gaussian and require that the zeroth, first, and second
moments of the Gaussian and binomial distribution be equal. We write

P(n) = Ae=B=m7%/2, (3.196)

where A, B, and 7 are the parameters to be determined. We first require that

N
/ P(n)dn = 1. (3.197)
0
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Because P(n) depends on the difference n —n, it is convenient to change the variable of integration
in (3.197) to x = n — 1 and write

N(1-p)
/ P(z)dx =1, (3.198)
—Np
where ,
P(z) = Ae™ B /2, (3.199)

Because we are interested in the limit N — oo, we can extend the limits in (3.198) to +oc:

/OO P(z)dx = 1. (3.200)

— 00

(a) The first moment of the Gaussian distribution is

i :/OO nP(n)dn, (3.201)

— 00

where P(n) is given by (3.196). Make a change of variables and show that

n :/Oo(x + @) P(x) dx = 7. (3.202)

— 00

(b) The first moment of the binomial distribution is given by pN according to (3.96). Show that if
we require the first moments of the binomial and Gaussian distributions to be equal, we obtain
n =pN.

(c¢) The variance of the binomial distribution is given in (3.99) and is equal to (n — )2 = Npq.
The corresponding variance of the Gaussian distribution is given by

(n—m)? :/ (n —m)? P(n)dn. (3.203)
Make the necessary change of variables in (3.203) and do the integrals in (3.200) and (3.203)
(see (A.23) and (A.17)) to confirm that the values of B and A are given by (3.115) and (3.117),
respectively.

(d) Explain why the third moments of the binomial and Gaussian distribution are not equal. [

Problem 3.73. A simple two-dimensional wall

Consider a two-dimensional “wall” constructed from N squares as shown in Figure 3.12. The
base row of the wall must be continuous, but higher rows can have gaps. Each column must be
continuous and self-supporting with no overhangs. Determine the total number Wy of different
N-site clusters, that is, the number of possible arrangements of N squares consistent with these
rules. Assume that the squares are identical. O
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Figure 3.12: Example of a wall as explained in Problem 3.73.

Problem 3.74. Heads you win

Two people take turns tossing a coin. The first person to obtain heads is the winner. Find the
probabilities of the following events:

(a) the game terminates at the fourth toss;
(b) the first player wins the game;

(c) the second player wins the game. O

Problem 3.75. First passage time

Suppose that a one-dimensional unbiased random walker starts out at the origin x = 0 at ¢t = 0
and takes unit length steps at regular intervals. As usual the probability of a step to the right is p.

(a) How many steps will it take for the walker to first reach 2 = +17 This quantity, known as the
first passage time, is a random variable because it is different for different realizations of the
walk. Let P, be the probability that x first equals +1 after n steps. What is P, for n =1, 3,
5, and 77

(b) Write a program to simulate a random walker in one dimension and determine the number
of steps needed to first reach x = 1. What is the probability that the walker will eventually
reach x = +1 assuming that p = 1/27 What is the mean number of steps needed to reach
=417 O

*Problem 3.76. Range of validity of the Gaussian distribution

How good is the Gaussian distribution as an approximation to the binomial distribution as a
function of N? To determine the validity of the Gaussian distribution, consider the next two terms
after (3.114) in the power series expansion of In P(n):

1

= )*C 4 gi(n—7)'D, (3.204)

4!
where C' = d®In P(n)/d*n and D = d*In P(n)/d*n evaluated at n = 7.

(a) Show that |C] < 1/N?p?¢%. What does C equal if p = ¢q?
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(b) Show that |D| < 4/N3p3¢3.

(¢) Show that the results for |C| and |D| imply that the neglect of terms beyond second order
in (n — n) is justified if [n — 1| < Npqg. Explain why stopping at second order is justified if
Npg> 1. O

Problem 3.77. A Lévy flight

A Lévy flight, named after the mathematician Paul Pierre Lévy, is a random walk in which the
length ¢ of each step is distributed according to a probability distribution of the form p(¢) o< £+,
where 1 < p < 3. Is the form of the probability distribution of the displacement of the walker after
N steps a Gaussian? O

Problem 3.78. Balls and boxes

Suppose there are three boxes each with two balls. The first box has two green balls, the second
box has one green and one red ball, and the third box has two red balls. Suppose you choose a
box at random and find one green ball. What is the probability that the other ball is green? [

Problem 3.79. Telephone numbers

Open a telephone directory to a random page or look at the phone numbers in your cell phone
and make a list corresponding to the last digit of the first 100 telephone numbers you see. Find
the probability P(n) that the number n appears in your list. Plot P(n) as a function of n and
describe its n-dependence. Do you expect that P(n) is approximately uniform? O

*Problem 3.80. Benford’s law or looking for number one

Suppose that you constructed a list of the populations of the largest cities in the world, or a list of
the house numbers of everybody you know. Other naturally occurring lists include river lengths,
mountain heights, radioactive decay half lives, the size of the files on your computer, and the first
digit of each of the numbers that you find in a newspaper. (The first digit of a number such as
0.00123 is 1.) What is the probability P(n) that the first digit is n, where n = 1,...,97 Do you
think that P(n) will be the same for all n?

It turns out that the form of the probability P(n) is given by

P(n) = logyq (1 + %) (3.205)

The distribution (3.205) is known as Benford’s law and is named after Frank Benford, a physicist,
who independently discovered it in 1938, although it was discovered previously by the astronomer
Simon Newcomb in 1881. The distribution (3.205) implies that for certain data sets, the first digit
is distributed in a predictable pattern with a higher percentage of the numbers beginning with the
digit 1. What are the numerical values of P(n) for the different values of n? Is P(n) normalized?

Accounting data is one of the many types of data that is expected to follow the Benford
distribution. It has been found that artificial data sets do not have first digit patterns that follow
the Benford distribution. Hence, the more an observed digit pattern deviates from the expected
Benford distribution, the more likely the data set is suspect. Tax returns have been checked in
this way:.

The frequencies of the first digit of 2000 numerical answers to problems given in the back of
four physics and mathematics textbooks have been tabulated and found to be distributed in a way
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1 | the 15861 | 11 | his 1839
2 | of 7239 | 12 | is 1810
3| to 6331 | 13 | he 1700
4| a b878 | 14 | as 1581
5 | and 5614 | 15 | on 1551
6 | in 5294 | 16 | by 1467
7 | that 2507 | 17 | at 1333
8 | for 2228 | 18 | it 1290
9 | was 2149 | 19 | from | 1228
10 | with 1839 | 20 | but 1138

Table 3.7: Ranking of the top 20 words.

consistent with Benford’s law. Benford’s law is also expected to hold for answers to homework
problems (see James R. Huddle, “A note on Benford’s law,” Math. Comput. Educ. 31, 66 (1997)).
The nature of Benford’s law is discussed by T. P. Hill, “The first digit phenomenon,” Am. Sci. 86,
358-363 (1998). O

*Problem 3.81. Faking it

Ask several of your friends to flip a coin 100 times and record the results or pretend to flip a coin
and fake the results. Can you tell which of your friends faked the results? O

*Problem 3.82. Zipf’s law

Suppose that we analyze a text and count the number of times a given word appears. The word
with rank r is the rth word when the words of the text are listed with decreasing frequency. Make
a log-log plot of word frequency f versus word rank r. The relation between word rank and word
frequency was first stated by George Kingsley Zipf (1902-1950). This relation states that for a

given text
1

rIn(1.78R)’

where R is the number of different words. Note the inverse power law behavior of the frequency
on the rank. The relation (3.206) is known as Zipf’s law. The top 20 words in an analysis of
a 1.6 MB collection of 423 short Time magazine articles (245,412 term occurrences) are given in
Table 3.7. O

[~ (3.206)

*Problem 3.83. Time of response to emails

When you receive an email, how long does it take for you to respond to it? If you keep a record of
your received and sent mail, you can analyze the distribution of your response times — the number
of hours between receiving an email from someone and replying to it.

It turns out that the time it takes people to reply to emails can be described by a power
law; that is, the probability p(7)dr that the response is between 7 and 7 + d7 is p(7) ~ 7~ with
a ~ 1. Oliveira and Barabdsi have shown that the response times of Einstein and Darwin to letters
can also be described by a power law, but with an exponent a ~ 3/2. (See J. G. Oliveira and
A.-L. Barabdsi, “Darwin and Einstein correspondence patterns,” Nature 437, 1251 (2005).) Their
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results suggest that there is an universal pattern for human behavior in response to correspondence.
What is the implication of a power law response? O

Problem 3.84. Pick any card

Three cards are in a hat. One card is white on both sides, the second is white on one side and red
on the other, and the third is red on both sides. The dealer shuffles the cards, takes one out and
places it flat on the table. The side showing is red. The dealer now says, “Obviously this card is
not the white-white card. It must be either the red-white card or the red-red card. I will bet even
money that the other side is red.” Is this bet fair? O

“Problem 3.85. Societal response to rare events

(a) Estimate the probability that an asteroid will impact the Earth and cause major damage. Does
it make sense for society to take steps now to guard itself against such an occurrence?

(b) The likelihood of the breakdown of the levees near New Orleans was well known before its
occurrence on August 30, 2005. Discuss the various reasons why the decision was made not
to strengthen the levees. Relevant issues include the ability of people to think about the
probability of rare events, and the large amount of money needed to strengthen the levees to
withstand such an event. O

*Problem 3.86. Science and society issues

Does capital punishment deter murder? Are vegetarians more likely to have daughters? Does
it make sense to talk about a “hot hand” in basketball? Are the digits of m random? See
<chance.dartmouth.edu/chancewiki/> and <www.dartmouth.edu/~chance/> to read about in-
teresting issues involving probability and statistics. O

Suggestions for further reading

Vinay Ambegaokar, Reasoning About Luck, Cambridge University Press (1996). A book devel-
oped for a course for non-science majors. An excellent introduction to statistical reasoning
and its uses in physics.

Ralph Baierlein, Atoms and Information Theory, W. H. Freeman (1971) derives the Boltzmann
distribution using arguments similar to those used to obtain (3.169).

Arieh Ben-Naim, Entropy Demystified: The Second Law Reduced to Plain Common Sense, World
Scientific (2007).

Marta C. Gonzalez, César A. Hidalgo, and Albert-Laszl6 Barabasi, “Understanding individual
human mobility patterns,” Nature 453, 779-782 (2008). The authors studied the trajectories
of 100,000 cell phone users over a six-month period and found that human trajectories cannot
be simply modeled by a Lévy flight or as an ordinary random walk. Similar studies have been
done on animal trajectories. The website <barabasilab.com/> has many examples of the
application of probability to diverse systems of interest in statistical physics.
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Peter L. Bernstein, Against the Gods: The Remarkable Story of Risk, John Wiley & Sons (1996).
The author is a successful investor and an excellent writer. The book includes an excellent
summary of the history of probability.

David S. Betts and Roy E. Turner, Introductory Statistical Mechanics, Addison-Wesley (1992).
Section 3.4 is based in part on Chapter 3 of this text.

Jean-Phillippe Bouchaud and Marc Potters, Theory of Financial Risks, Cambridge University
Press (2000). This book by two physicists is an example of the application of concepts in
probability and statistical mechanics to finance. Although the treatment is at the graduate
level and assumes some background in finance, the first several chapters are a good read for
students who are interested in the overlap of physics, finance, and economics. Also see J.
Doyne Farmer, Martin Shubik, and Eric Smith, “Is economics the next physical science?,”
Phys. Today 58 (9), 37-42 (2005). A related book on the importance of rare events is by
Nassim Nicholas Taleb, The Black Swan: The Impact of the Highly Improbable, Random
House (2007).

Giulio D’Agostini, “Teaching statistics in the physics curriculum: Unifying and clarifying role of
subjective probability,” Am. J. Phys. 67, 1260-1268 (1999). The author, whose main research
interest is in particle physics, discusses subjective probability and Bayes’ theorem. Section 3.4
is based in part on this article.

See <www.math.uah.edu/stat/objects/> for a simulation of the Galton board.

F. N. David, Games, Gods and Gambling: A History of Probability and Statistical Ideas, Dover
Publications (1998).

Gene F. Mazenko, Equilibrium Statistical Mechanics, John Wiley & Sons (2000). Sections 1.7 and
1.8 of this graduate level text discuss the functional form of the missing information.

Leonard Mlodinow, The Drunkard’s Walk: How Randomness Rules Our Lives, Vintage Press
(2009). A popular book on how the mathematical laws of randomness affect our lives.

Elliott W. Montroll and Michael F. Shlesinger, “On the wonderful world of random walks,” in
Studies in Statistical Mechanics, Vol. XI: Nonequilibrium Phenomena II, edited by J. L.
Lebowitz and E. W. Montroll North-Holland (1984). An excellent article on the history of
random walks.

Elliott W. Montroll and Wade W. Badger, Introduction to Quantitative Aspects of Social Phenom-
ena, Gordon and Breach (1974). The applications of probability that are discussed include
traffic flow, income distributions, floods, and the stock market.

Richard Perline, “Zipf’s law, the central limit theorem, and the random division of the unit
interval,” Phys. Rev. E 54, 220-223 (1996).

The outcome of tossing a coin is not really random. See Ivars Peterson, “Heads or tails?,” Sci-
ence News Online, <www.sciencenews.org/articles/20040228/mathtrek.asp> and Erica
Klarreich, “Toss out the toss-up: Bias in heads-or-tails, Science News 165 (9), 131 (2004),
<www.sciencenews.org/articles/20040228/fob2.asp>. Some of the original publications
include Joseph Ford, “How random is a coin toss?,” Phys. Today 36 (4), 40-47 (1983); Joseph


<www.math.uah.edu/stat/objects/>
http://www.math.uah.edu/stat/objects/
<www.sciencenews.org/articles/20040228/mathtrek.asp>
http://www.sciencenews.org/articles/20040228/mathtrek.asp
<www.sciencenews.org/articles/20040228/fob2.asp>
http://www.sciencenews.org/articles/20040228/fob2.asp

CHAPTER 3. CONCEPTS OF PROBABILITY 172

B. Keller, “The probability of heads,” Am. Math. Monthly 93, 191-197 (1986); and Vladimir
Z. Vulovic and Richard E. Prange, “Randomness of a true coin toss,” Phys. Rev. A 33,
576-582 (1986).

S. Redner, “Random multiplicative processes: An elementary tutorial,” Am. J. Phys. 58, 267-273
(1990).

Jason Rosenhouse, The Monty Hall Problem: The Remarkable Story of Math’s Most Contentious
Brain Teaser, Oxford University Press (2009).

Charles Ruhla, The Physics of Chance, Oxford University Press (1992).

B. Schmittmann and R. K. P. Zia, ““Weather’ records: Musings on cold days after a long hot
Indian summer,” Am. J. Phys. 67, 1269-1276 (1999). A relatively simple introduction to the
statistics of extreme values. Suppose that somebody breaks the record for the 100 m dash.
How long do such records typically survive before they are broken?

Kyle Siegrist at the University of Alabama in Huntsville has developed many applets to illustrate
concepts in probability and statistics. See <www.math.uah.edu/stat/> and follow the link
to Bernoulli processes.

J. Torres, S. Ferndndez, A. Gamero, and A Sola, “How do numbers begin? (The first digit law),”
Eur. J. Phys. 28, L17-L25 (2007).

G. Troll and P. beim Graben, “Zipf’s law is not a consequence of the central limit theorem,”
Phys. Rev. E 57, 1347-1355 (1998).

Hans Christian von Baeyer, Information: The New Language of Science, Harvard University Press
(2004). This book raises many profound issues. It is not an easy read even though it is well
written.

Charles A. Whitney, Random Processes in Physical Systems: An Introduction to Probability-
Based Computer Simulations, John Wiley & Sons (1990).

Michael M. Woolfson, Everyday Probability and Statistics, Imperial College Press (2008). An
interesting book for lay people.

A discussion by Eliezer Yudkowsky of the intuitive basis of Bayesian reasoning can be found at
<yudkowsky.net/bayes/bayes.html>.

R. K. P. Zia and B. Schmittmann, “Watching a drunkard for 10 nights: A study of distributions
of variances,” Am. J. Phys. 71, 859-865 (2003). See Problem 3.70.
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