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We introduce the concepts of temperature, energy, work, heating, entropy, engines, and the laws
of thermodynamics and related macroscopic concepts.

2.1 Introduction

In this chapter we will discuss ways of thinking about macroscopic systems and introduce the basic
concepts of thermodynamics. Because these ways of thinking are very different from the ways that
we think about microscopic systems, most students of thermodynamics initially find it difficult
to apply the abstract principles of thermodynamics to concrete problems. However, the study of
thermodynamics has many rewards as was appreciated by Einstein:

A theory is the more impressive the greater the simplicity of its premises, the more
different kinds of things it relates, and the more extended its area of applicability.
Therefore the deep impression that classical thermodynamics made to me. It is the only
physical theory of universal content which I am convinced will never be overthrown,
within the framework of applicability of its basic concepts.?

The essence of thermodynamics can be summarized by two laws:?2 (1) Energy is conserved
and (2) entropy increases. These statements of the laws are deceptively simple. What is energy?
You are probably familiar with the concept of energy from other courses, but can you define it?

LA. Einstein, Autobiographical Notes, Open Court Publishing Company (1991).
2The nature of thermodynamics is summarized in the song, “First and Second Law,” by Michael Flanders and
Donald Swann.
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Abstract concepts such as energy and entropy are not easily defined nor understood. However, as
you apply these concepts in a variety of contexts, you will gradually come to understand them.

Because thermodynamics describes the macroscopic properties of macroscopic systems without
appeal to arguments based on the nature of their microscopic constituents, the concepts of energy
and entropy in this context are very abstract. So why bother introducing thermodynamics as a
subject in its own right, when we could more easily introduce energy and entropy from microscopic
considerations? Besides the intellectual challenge, an important reason is that the way of thinking
required by thermodynamics can be applied in other contexts where the microscopic properties
of the system are poorly understood or very complex. However, there is no need to forget the
general considerations that we discussed in Chapter 1. And you are also encouraged to read
ahead, especially in Chapter 4 where the nature of entropy is introduced from first principles.

2.2 The System

The first step in applying thermodynamics is to select the appropriate part of the universe of
interest. This part of the universe is called the system. In this context the term system is simply
anything that we wish to consider. The system is defined by a closed surface called the boundary
(see Figure 2.1). The boundary may be real or imaginary and may or may not be fixed in shape
or size. The system might be as obvious as a block of steel, water in a container, or the gas in a
balloon. Or the system might be defined by an imaginary fixed boundary within a flowing liquid.

The surroundings are the rest of the universe that can in any significant way affect or be
affected by the system. For example, if an ice cube is placed in a glass of water, we might take
the ice to be the system and the water to be the surroundings. In this example we would usually
ignore the interaction of the ice cube with the air in the room and the interaction of the glass
with the table on which the glass is set. However, if the size of the ice cube and the amount of
water were about the same, we would need to consider the ice cube and water to be the system
and the air in the room to be the surroundings. The choice depends on the questions of interest.
The surroundings need not surround the system. An open system can exchange matter with its
surroundings; a closed system cannot.

2.3 Thermodynamic Equilibrium

Macroscopic systems often exhibit some memory of their recent history. A stirred cup of tea
continues to swirl for a while after we stop stirring. A hot cup of coffee cools and takes on the
temperature of its surroundings regardless of its initial temperature. The final macrostates of such
systems are called equilibrium states, which are characterized by their time independence, history
independence, and relative simplicity.

Time independence means that the measurable macroscopic properties (such as the temper-
ature, pressure, and density) of equilibrium systems do not change with time except for very
small fluctuations that we can observe only under special conditions. In contrast, nonequilibrium
macrostates change with time. The time scale for changes may be seconds or years, and cannot
be determined from thermodynamic arguments alone. We can say for sure that a system is not
in equilibrium if its properties change with time, but time independence during our observation
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Figure 2.1: Schematic of a thermodynamic system.

time is not sufficient to determine if a system is in equilibrium. It is possible that we just did not
observe the system long enough.

As we discussed in Chapter 1 the macrostate of a system refers to bulk properties such as
temperature and pressure. Only a few quantities are needed to specify the macrostate of a system in
equilibrium. For example, if you drop an ice cube into a cup of coffee, the temperature immediately
afterward will vary throughout the coffee until the coffee reaches equilibrium. Before equilibrium is
reached, we must specify the temperature everywhere in the coffee. Once equilibrium is reached, the
temperature will be uniform throughout and only one number is needed to specify the temperature.

History independence implies that a system can go to the same final equilibrium macrostate
through an infinity of possible ways. The final macrostate has lost all memory of how it was
produced. For example, if we put several cups of coffee in the same room, they will all reach the
same final temperature, regardless of their different initial temperatures or how much milk was
added. However, there are many cases where the history of the system is important. For example,
a metal cooled quickly may contain defects that depend on the detailed history of how the metal
was cooled.

It is difficult to know for certain whether a system is in equilibrium because the time it takes a
system to reach equilibrium may be very long and our measurements might not indicate whether a
system’s macroscopic properties are changing. In practice, the criterion for equilibrium is circular.
Operationally, a system is in equilibrium if its properties can be consistently described by the laws
of thermodynamics.

The circular nature of thermodynamics is not fundamentally different than that of other fields
of physics. For example, the law of conservation of energy can never be disproved, because we
can always make up new forms of energy to make it true. If we find that we are continually
making up new forms of energy for every new system we find, then we would discard the law of
conservation of energy as not being useful. For example, if we were to observe a neutron at rest
decay into an electron and proton (beta decay) and measure the energy and momentum of the
decay products, we would find an apparent violation of energy conservation in the vast majority of
decays. Historically, Pauli did not reject energy conservation, but instead suggested that a third
particle (the neutrino) is also emitted. Pauli’s suggestion was made in 1930, but the (anti)neutrino
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was not detected until 1956. In this example our strong belief in conservation of energy led to a
new prediction and discovery.

The same is true for thermodynamics. We find that if we use the laws of thermodynamics for
systems that experimentally appear to be in equilibrium, then everything works out fine. In some
systems such as glasses that we suspect are not in thermal equilibrium, we must be very careful in
interpreting our measurements according to the laws of thermodynamics.

2.4 Temperature

The concept of temperature plays a central role in thermodynamics and is related to the physiolog-
ical sensation of hot and cold. Because such a sensation is an unreliable measure of temperature,
we will develop the concept of temperature by considering what happens when two bodies are
placed so that they can exchange energy. The most important property of the temperature is its
tendency to become equal. For example, if we put a hot and a cold body into thermal contact, the
temperature of the hot body decreases and the temperature of the cold body increases until both
bodies are at the same temperature and the two bodies are in thermal equilibrium.

Problem 2.1. Physiological sensation of temperature

(a) Suppose you are blindfolded and place one hand in a pan of warm water and the other hand in
a pan of cold water. Then your hands are placed in another pan of water at room temperature.
What temperature would each hand perceive?

(b) What are some other examples of the subjectivity of our perception of temperature? O

To define temperature more carefully, consider two systems separated by an insulating wall.?
A wall is said to be insulating if there is no energy transfer through the wall due to temperature
differences between regions on both sides of the wall. If the wall between the two systems were
conducting, then such energy transfer would be possible. Insulating and conducting walls are
idealizations. A good approximation to the former is the wall of a thermos bottle; a thin sheet of
copper is a good approximation to the latter.

Consider two systems surrounded by insulating walls, except for a wall that allows energy
transfer. For example, suppose that one system is a cup of coffee in a vacuum flask and the other
system is alcohol enclosed in a glass tube. (The glass tube is in thermal contact with the coffee.)
If energy is added to the alcohol in the tube, the fluid will expand, and if the tube is sufficiently
narrow, the column height of the alcohol will be noticeable. The alcohol column height will reach
a time-independent value, and hence the coffee and the alcohol are in equilibrium. Next suppose
that we dip the alcohol filled tube into a cup of tea in another vacuum flask. If the height of the
alcohol column is the same as it was when placed into the coffee, we say that the coffee and tea
are at the same temperature. This conclusion can be generalized as

If two bodies are in thermal equilibrium with a third body, they are in thermal equi-
librium with each other (zeroth law of thermodynamics).

3An insulating wall is sometimes called an adiabatic wall.
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This conclusion is sometimes called the zeroth law of thermodynamics. The zeroth law implies
the existence of a universal property of systems in thermal equilibrium and allows us to identify
this property as the temperature of a system without a direct comparison to some standard. This
conclusion is not a logical necessity, but an empirical fact. If person A is a friend of B and B is a
friend of C, it does not follow that A is a friend of C.

Problem 2.2. Describe some other properties that also satisfy a law similar to the zeroth law. [

Any body whose macroscopic properties change in a well-defined manner can be used to
measure temperature. A thermometer is a system with some convenient macroscopic property
that changes in a simple way as the equilibrium macrostate changes. Examples of convenient
macroscopic properties include the length of an iron rod and the electrical resistance of gold. In
these cases we need to measure only a single quantity to indicate the temperature.

Problem 2.3. Why are thermometers relatively small devices in comparison to the system of
interest? O

To use different thermometers, we need to make them consistent with one another. To do
so, we choose a standard thermometer that works over a wide range of temperatures and define
reference temperatures which correspond to physical processes that always occur at the same
temperature. The familiar gas thermometer is based on the fact that the temperature T of a dilute
gas is proportional to its pressure P at constant volume. The temperature scale that is based on
the gas thermometer is called the ideal gas temperature scale. The unit of temperature is called
the kelvin (K). We need two points to define a linear function. We write

T(P) = aP +b, (2.1)

where a and b are constants. We may choose the magnitude of the unit of temperature in any
convenient way. The gas temperature scale has a natural zero — the temperature at which the
pressure of an ideal gas vanishes — and hence we take b = 0. The second point is established
by the triple point of water, the unique temperature and pressure at which ice, water, and water
vapor coexist. The temperature of the triple point is defined to be exactly 273.16 K. Hence, the
temperature of a fixed volume gas thermometer is given by

P
T= 273.16P—, (ideal gas temperature scale) (2.2)
tp

where P is the pressure of the ideal gas thermometer, and F;;, is its pressure at the triple point.
Equation (2.2) holds for a fixed amount of matter in the limit P — 0. From (2.2) we see that the
kelvin is defined as the fraction 1/273.16 of the temperature of the triple point of water.

At low pressures all gas thermometers read the same temperature regardless of the gas that
is used. The relation (2.2) holds only if the gas is sufficiently dilute that the interactions between
the molecules can be ignored. Helium is the most useful gas because it liquefies at a temperature
lower than any other gas.

The historical reason for the choice of 273.16 K for the triple point of water is that it gave, to
the accuracy of the best measurements then available, 100 K for the difference between the ice point
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triple point | 273.16 K | definition
steam point | 373.12K | experiment
ice point 273.15K | experiment

Table 2.1: Fixed points of the ideal gas temperature scale.

(the freezing temperature at standard pressure*) and the steam point (the boiling temperature at
the standard pressure of water). However, more accurate measurements now give the difference as
99.97K (see Table 2.1).

It is convenient to define the Celsius scale:
Tcelcius =T - 273'157 (23)

where T is the ideal gas temperature. Note that the Celsius and ideal gas temperatures differ
only by the shift of the zero. By convention the degree sign is included with the C for Celsius
temperature (°C), but no degree sign is used with K for kelvin.

Problem 2.4. Temperature scales

(a) The Fahrenheit scale is defined such that the ice point is at 32°F and the steam point is 212°F.
Derive the relation between the Fahrenheit and Celsius temperature scales.

(b) What is body temperature (98.6°F) on the Celsius and Kelvin scales?

(¢) A meteorologist in Canada reports a temperature of 30°C. How does this temperature compare
to 70°F?

(d) The centigrade temperature scale is defined as

100

Tcentigrade = (T - ﬂce)ﬁv
steam — Lice

(2.4)
where Tice and Titeam are the ice and steam points of water (see Table 2.1). By definition, there
is 100 centigrade units between the ice and steam points. How does the centigrade unit defined
in (2.4) compare to the Kelvin or Celsius unit? The centigrade scale has been superseded by
the Celsius scale. O

Problem 2.5. What is the range of temperatures that is familiar to you from your everyday
experience and from your prior studies? O

2.5 Pressure Equation of State

As we have discussed, the equilibrium macrostates of a thermodynamic system are much simpler
to describe than nonequilibrium macrostates. For example, the pressure P of a simple fluid (a gas

4Standard atmospheric pressure is the pressure of the Earth’s atmosphere under normal conditions at sea level
and is defined to be 1.013 x 10° N/mz. The SI unit of pressure is N/ng this unit has been given the name pascal
(Pa).



CHAPTER 2. THERMODYNAMIC CONCEPTS 37

or a liquid) consisting of a single species is uniquely determined by its (number) density p = N/V,
and temperature T, where N is the number of particles and V is the volume of the system. That
is, the quantities P, T', and p are not independent, but are connected by a relation of the general
form

P = f(T, p). (2.5)
This relation is called the pressure equation of state. Each of these three quantities can be regarded
as a function of the other two, and the macrostate of the system is determined by any two of the
three. Note that we have implicitly assumed that the thermodynamic properties of a fluid are
independent of its shape.

The pressure equation of state must be determined either empirically or from a simulation or
from a theoretical calculation (an application of statistical mechanics). As discussed in Section 1.9
the ideal gas represents an idealization in which the potential energy of interaction between the
molecules is very small in comparison to their kinetic energy and the system can be treated clas-
sically. For an ideal gas, we have for fixed temperature the empirical relation P &< 1/V, or

PV = constant. (fixed temperature) (2.6)

The relation (2.6) is sometimes called Boyle’s law and was published by Robert Boyle in 1660.
Note that the relation (2.6) is not a law of physics, but an empirical relation. An equation such
as (2.6), which relates different macrostates of a system all at the same temperature, is called an
isotherm.

We also have for an ideal gas the empirical relation
VxT. (fixed pressure) (2.7)

Some textbooks refer to (2.7) as Charles’s law, but it should be called the law of Gay-Lussac.’

We can express the empirical relations (2.6) and (2.7) as P o< T/V. In addition, if we hold
T and V constant and introduce more gas into the system, we find that the pressure increases in
proportion to the amount of gas. If NV is the number of gas molecules, we can write

PV = NET, (ideal gas pressure equation of state) (2.8)

where the constant of proportionality & in (2.8) is found experimentally to have the same value for
all gases in the limit P — 0. The value of k is

kE=138x10"%J/K, (Boltzmann’s constant) (2.9)

and is called Boltzmann’s constant. The equation of state (2.8) will be derived using statistical
mechanics in Section 4.5.

Because the number of particles in a typical gas is very large, it sometimes is convenient to
measure this number relative to the number of particles in one (gram) mole of gas.® A mole of
any substance consists of Avogadro’s number N4 = 6.022 x 10?3 of that substance. If there are v
moles, then N = vN4, and the ideal gas equation of state can be written as

PV = vNkT = vRT, (2.10)

5See Bohren and Albrecht, pages 51-53.
6 A mole is defined as the quantity of matter that contains as many objects (for example, atoms or molecules) as
the number of atoms in exactly 12 g of 12C.
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where
R = Nk =8.314J/Kmole (2.11)

is the gas constant.

Real gases do not satisfy the ideal gas equation of state except in the limit of low density. For
now we will be satisfied with considering a simple phenomenological” equation of state of a real gas
with an interparticle interaction similar to the Lennard-Jones potential (see Figure 1.1, page 6).
A simple phenomenological pressure equation of state for real gases that is more accurate than the
ideal gas at moderate densities is due to van der Waals and has the form

N2
(P+ Wa) (V — Nb) = NKT, (van der Waals equation of state) (2.12)

where a and b are empirical constants characteristic of a particular gas. The parameter b takes into
account the finite size of the molecules by decreasing the effective available volume to any given
molecule. The parameter a is associated with the attractive interactions between the molecules.
We will derive this approximate equation of state in Section 8.2.

2.6 Some Thermodynamic Processes

A change from one equilibrium macrostate of a system to another is called a thermodynamic
process. Thermodynamics does not determine how much time such a process will take, and the final
macrostate is independent of the amount of time it takes to reach the equilibrium macrostate. To
describe a process in terms of thermodynamics, the system must be in thermodynamic equilibrium.
However, for any process to occur, the system cannot be exactly in thermodynamic equilibrium
because at least one thermodynamic variable must change. If the change can be done so that the
system can be considered to be in a succession of equilibrium macrostates, then the process is
called quasistatic. A quasistatic process is an idealized concept. Although no physical process is
quasistatic, we can imagine real processes that approach the limit of quasistatic processes. Usually,
quasistatic processes are accomplished by making changes very slowly. That is, a quasistatic process
is defined as a succession of equilibrium macrostates. The name thermodynamics is a misnomer
because thermodynamics treats only equilibrium macrostates and not dynamics.

Some thermodynamic processes can go only in one direction and others can go in either
direction. For example, a scrambled egg cannot be converted to a whole egg. Processes that can
go only in one direction are called irreversible. A process is reversible if it is possible to restore the
system and its surroundings to their original condition. (The surroundings include any body that
was affected by the change.) That is, if the change is reversible, the status quo can be restored
everywhere.

Processes such as stirring the cream in a cup of coffee or passing an electric current through a
resistor are irreversible because once the process is done, there is no way of reversing the process.
But suppose we make a small and very slow frictionless change of a constraint such as an increase
in the volume, which we then reverse. Because there is no “friction,” we have not done any net
work in this process. At the end of the process, the constraints and the energy of the system

"We will use the word phenomenological often. It means a description of phenomena that is not derived from
first principles.
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return to their original values and the macrostate of the system is unchanged. In this case we can
say that this process is reversible. No real process is truly reversible because it would require an
infinite time to occur. The relevant question is whether the process approaches reversibility.

Problem 2.6. Are the following processes reversible or irreversible?

Squeezing a plastic bottle.

(a
(

b) Ice melting in a glass of water.

(¢) The movement of a real piston (where there is friction) to compress a gas.

)
)
)
(d) Air is pumped into a tire. O

2.7 Work

During a process the surroundings can do work on the system of interest or the system can do
work on its surroundings. We now obtain an expression for the mechanical work done on a system
in a quasistatic process. For simplicity, we assume the system to be a fluid. Because the fluid is
in equilibrium, we can characterize it by a uniform pressure P. For simplicity, we assume that
the fluid is contained in a cylinder of cross-sectional area A fitted with a movable piston (see
Figure 2.2). The piston allows no gas or liquid to escape. We can add weights to the piston
causing it to compress the fluid. Because the pressure is defined as the force per unit area, the
magnitude of the force exerted by the fluid on the piston is given by PA, which also is the force
exerted by the piston on the fluid. If the piston is displaced quasistatically by an amount dz, then
the work done on the fluid by the piston is given by®

dW = —(PA)dx = —P (Adx) = —PdV. (2.13)

The negative sign in (2.13) is present because if the volume of the fluid is decreased, the work done
by the piston is positive.

If the volume of the fluid changes quasistatically from an initial volume V; to a final volume

V5, the system remains very nearly in equilibrium, and hence its pressure at any stage is a function
of its volume and temperature. Hence, the total work is given by the integral

Va
Wiy = _/ P(T,V)dV. (quasistatic process) (2.14)
1%

Note that the work done on the fluid is positive if V5 < V4 and is negative if V5 > V.

8Equation (2.13) can be written as
dW/dt = —P(dV/dt),
if you wish to avoid the use of differentials (see Section 2.24.1, page 88).
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F=PA

Figure 2.2: Example of work done on a fluid enclosed within a cylinder fitted with a piston when
the latter moves a distance Ax.

For the special case of an ideal gas, the work done on a gas that is compressed at constant
temperature (an isothermal process) is given by

Va
Wi_o=—-NEkT ﬂ (2.15)
WV
Z]

1

= —NkTIn (ideal gas at constant temperature) (2.16)

We have noted that the pressure P must be uniform throughout the fluid when it is in equi-
librium. If compression occurs, then pressure gradients are present. To move the piston from its
equilibrium position, we must add (remove) a weight from it. Then for a brief time, the total
weight on the piston will be greater (less) than PA. This difference is necessary if the piston is
to move and do work on the gas. If the movement is sufficiently slow, the pressure departs only
slightly from its equilibrium value. What does “sufficiently slow” mean? To answer this question,
we have to go beyond the macroscopic reasoning of thermodynamics and consider the molecules
that comprise the fluid. If the piston is moved a distance Ax, then the density of the molecules near
the piston becomes greater than in the bulk of the fluid. Consequently, there is a net movement of
molecules away from the piston until the density again becomes uniform. The time 7 for the fluid
to return to equilibrium is given by 7 &~ Ax /v, where vy is the mean speed of the molecules. For
comparison, the characteristic time 7, for the process is 7, = Ax/v,, where v, is the speed of the
piston. If the process is quasistatic, we require that 7 < 7, or v, < vs. That is, the speed of the
piston must be much less than the mean speed of the molecules, a condition that is easy to satisfy
in practice.

Problem 2.7. Work

To refresh your understanding of work in the context of mechanics, look at Figure 2.3 and explain
whether the following quantities are positive, negative, or zero:

(a) The work done on the block by the hand.
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=

Figure 2.3: A block on an frictionless incline. The arrow indicates the direction of motion. The
figure is adapted from Loverude et al.

(b) The work done on the block by the Earth.

(¢) The work done on the hand by the block (if there is no such work, state so explicitly). O

Work depends on the path. The solution of the following example illustrates that the work
done on a system depends not only on the initial and final macrostates, but also on the intermediate
macrostates, that is, on the path.

Example 2.1. Cyclic processes

Figure 2.4 shows a cyclic path in the PV diagram of an ideal gas. How much work is done on the
gas during this cyclic process? (Look at the figure before you attempt to answer the question.)

Solution. During the isobaric (constant pressure) expansion 1 — 2, the work done on the gas is
Wi—2 = —Phigh(Vhigh — Viow)- (2.17)

No work is done from 2 — 3 and from 4 — 1. The work done on the gas from 3 — 4 is

W3~>4 = _How(‘/low - Vhigh)- (218)

The net work done on the gas is
Wnct - WlﬂQ + W3~>4 - _Phigh(vhigh - ‘/low) - P’low (‘/low - Vhigh) (219&)
= —(Phigh — Pow) (Vhigh — Viow) < 0. (2.19b)

The result is that the net work done on the gas is the negative of the area enclosed by the path.
If the cyclic process were carried out in the reverse order, the net work done on the gas would be
positive. O

Problem 2.8. Work in a cyclic process

Consider the cyclic process as described in Example 2.1.

(a) Because the system was returned to its original pressure and volume, why is the net amount
of work done on the system not zero?
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Figure 2.4: A simple cyclic process from 1 — 2 — 3 — 4 — 1. The magnitude of the net work
done on the gas equals the enclosed area.

(b) What would be the work done on the gas if the gas were taken from 1 — 2 — 3 and then back
to 1 along the diagonal path connecting 3 and 17 O

Example 2.2. Work changes the total energy

Consider two blocks sitting on a table that are connected by a spring. Initially the spring is
unstretched. The two blocks are pushed together by a force on each block of magnitude F' through
a distance d. What is the net work done on the two blocks plus spring system. How much does
the energy of the system change? How much does the kinetic energy of the system change? How
much does the potential energy of the system change?

Solution. Your initial thought might be that because there is no net force on the system, the work
done is zero. That answer is incorrect — understanding mechanics isn’t easy. To calculate the work
you need to add the work done by each force separately. In this case each force does an amount of
work equal to F'd, and thus the total work done on the system is 2F'd. You might think that the
change in the kinetic energy of the system is equal to 2Fd from the work-kinetic energy theorem
that you learned in mechanics. That’s also incorrect because the work-kinetic energy theorem is
applicable only to a single particle, not to a composite system as we have here. All we can say in
this case is that the total energy of the two blocks plus spring system changes by 2F'd. We cannot
answer questions about the change in kinetic or potential energies because not enough information
is given.

This example is analogous to a system of many particles. When we do work on it, the total
energy of the system changes, but we cannot say anything about how the internal kinetic energy
or potential energy changes. It is important to realize that systems of many particles contain both
kinetic and potential energy. O
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2.8 The First Law of Thermodynamics

If we think of a macroscopic system as consisting of many interacting particles, we know that it
has a well defined total energy which satisfies a conservation principle. This simple justification of
the existence of a thermodynamic energy function is very different from the historical development
because thermodynamics was developed before the atomic theory of matter was well accepted.
Historically, the existence of a macroscopic conservation of energy principle was demonstrated by
purely macroscopic observations as outlined in the following.”

Consider a system enclosed by insulating walls. Such a system is thermally isolated. An
adiabatic process is one in which the macrostate of the system is changed only by work done on
the system. That is, no energy is transfered to or from the system by temperature differences.
We know from overwhelming empirical evidence that the amount of work needed to change the
macrostate of a thermally isolated system depends only on the initial and final macrostates and not
on the intermediate states through which the system passes. This independence of the path under
these conditions implies that we can define a function E such that for a change from macrostate 1
to macrostate 2, the work done on a thermally isolated system equals the change in E:

W =E, - E =AFE. (adiabatic process) (2.20)

The quantity F is called the internal energy of the system.'® The internal energy in (2.20) is
measured with respect to the center of mass and is the same as the total energy of the system in
a reference frame in which the center of mass velocity of the system is zero.!! The energy E is
an example of a state function, that is, it characterizes the state of a macroscopic system and is
independent of the path.

If we choose a convenient reference macrostate as the zero of energy, then F has an unique
value for each macrostate of the system because the work done on the system W is independent
of the path for an adiabatic process. (Remember that in general W depends on the path.)

If we relax the condition that the change be adiabatic and allow the system to interact with
its surroundings, we would find in general that AFE # W. (The difference between AE and W is
zero for an adiabatic process.) We know that we can increase the energy of a system by doing work
on it or by heating it as a consequence of a temperature difference between it and its surroundings.
In general, the change in the (internal) energy of a closed system (fixed number of particles) is

given by
AE=W+Q| (first law of thermodynamics) (2.21)

The quantity @ is the change in the system’s energy due to heating (@ > 0) or cooling (@ < 0) and
W is the work done on the system. Equation (2.21) expresses the law of conservation of energy
and is known as the first law of thermodynamics. This equation is equivalent to saying that there
are two macroscopic ways of changing the internal energy of a system: doing work and heating
(cooling).

9These experiments were done by Joseph Black (1728-1799), Benjamin Thompson (Count Rumford) (1753-1814),
Robert Mayer (1814-1878), and James Joule (1818-1889). Mayer and Joule are now recognized as the co-discovers
of the first law of thermodynamics, but Mayer received little recognition at the time of his work.

10 Another common notation for the internal energy is U.

M Microscopically, the internal energy of a system of particles equals the sum of the kinetic energy in a reference
frame in which the center of mass velocity is zero plus the potential energy arising from the interactions of the
particles.
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One consequence of the first law of thermodynamics is that AFE is independent of the path,
even though the amount of work W depends on the path. And because W depends on the path
and AFE does not, the amount of heating also depends on the path. From one point of view, the
first law of thermodynamics expresses what seems obvious to us today, namely, conservation of
energy. From another point of view, the first law implies that although the work done and the
amount of heating depend on the path, their sum is independent of the path.

Problem 2.9. Pumping air

A bicycle pump contains one mole of a gas. The piston fits tightly so that no air escapes and
friction is negligible between the piston and the cylinder walls. The pump is thermally insulated
from its surroundings. The piston is quickly pressed inward. What happens to the temperature of
the gas? Explain your reasoning. O

So far we have considered two classes of thermodynamic quantities. One class consists of state
functions because they have a specific value for each macrostate of the system. An example of
such a function is the internal energy E. As we have discussed, there are other quantities, such as
work done on a system and energy transfer due to heating that are not state functions and depend
on the thermodynamic process by which the system changed from one macrostate to another.

The energy of a system is a state function. The mathematical definition of a state function
goes as follows. Suppose that f(z) is a state function that depends on the parameter z. If z
changes from x7 to x2, then the change in f is

ar=| P df = ) — fa). (2.22)

That is, the change in f depends only on the end points 1 and xo. We say that df is an exact
differential. State functions have exact differentials. Examples of inexact and exact differentials
are given in Section 2.24.1.

Originally, many scientists thought that there was a fluid called heat in all substances which
could flow from one substance to another. This idea was abandoned many years ago, but it is
still used in everyday language. Thus, people talk about adding heat to a system. We will avoid
this use and whenever possible we will avoid the use of the noun “heat” altogether. Instead, we
will refer to heating or cooling processes. These processes occur whenever two bodies at different
temperatures are brought into thermal contact. In everyday language we say that heat flows from
the hot to the cold body. In the context of thermodyamics we will say that energy is transferred
from the hotter to the colder body. There is no need to invoke the noun “heat,” and it is misleading
to say that heat “flows” from one body to another.

To understand better that there is no such thing as the amount of heat in a body, consider
the following simple analogy adapted from Callen. A farmer owns a pond, fed by one stream and
drained by another. The pond also receives water from rainfall and loses water by evaporation.
The pond is the system of interest, the water within it is analogous to the internal energy, the
process of transferring water by the streams is analogous to doing work, the process of adding
water by rainfall is analogous to heating, and the process of evaporation is analogous to cooling.
The only quantity of interest is the amount of water, just as the only quantity of interest is energy
in the thermal case. An examination of the change in the amount of water in the pond cannot
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tell us how the water got there. The terms rain and evaporation refer only to methods of water
transfer, just as the terms work, heating, and cooling refer only to methods of energy transfer.

Another example is due to Bohren and Albrecht. Take a small plastic container and add just
enough water to it so that its temperature can be conveniently measured. Let the water and the
bottle come into equilibrium with their surroundings. Measure the temperature of the water, cap
the bottle, and shake the bottle until you are too tired to continue further. Then uncap the bottle
and measure the water temperature again. If there were a “whole lot of shaking going on,” you
would find the temperature had increased a little.

In this example, the temperature of the water increased without heating. We did work on the
water, which resulted in an increase in its internal energy as manifested by a rise in its temperature.
The same increase in temperature could have been obtained by bringing the water into contact
with a body at a higher temperature. It is impossible to determine by making measurements on
the water whether shaking or heating had been responsible for taking the system from its initial
to its final macrostate. (To silence someone who objects that you heated the water with “body
heat,” wrap the bottle with an insulating material.)

Problem 2.10. Distinguishing different types of water transfer

How could the owner of the pond distinguish between the different types of water transfer assuming
that the owner has flow meters, a tarpaulin, and a vertical pole? O

Problem 2.11. Convert the statement “I am cold, please turn on the heat,” to the precise language
of physics. O

Before the equivalence of heating and energy transfer was well established, a change in en-
ergy by heating was measured in calories. One calorie is the amount of energy needed to raise
the temperature of one gram of water from 14.5°C to 15.5°C. We now know that one calorie is
equivalent to 4.186J, but the use of the calorie for energy transfer by heating and the joule for
work still persists. Just to cause confusion, the calorie we use to describe the energy content of
foods is actually a kilocalorie.

2.9 Energy Equation of State

In (2.8) we gave the pressure equation of state for an ideal gas. Now that we know that the
internal energy is a state function, we need to know how E depends on two of the three variables,
T, p, and N (for a simple fluid). The form of the energy equation of state for an ideal gas must
also be determined empirically or calculated from first principles using statistical mechanics (see
Section 4.5, page 195). From these considerations the energy equation of state for a monatomic
gas is given by

3
E = §NkT. (ideal gas energy equation of state) (2.23)

Note that the energy of an ideal gas is independent of its density (for a fixed number of particles).
An approximate energy equation of state of a gas corresponding to the pressure equation of
state (2.12) is given by

3 N
E = §NkT - NVG' (van der Waals energy equation of state) (2.24)
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Note that the energy depends on the density p = N/V if the interactions between particles are
included.

Example 2.3. Work done on an ideal gas at constant temperature

Work is done on an ideal gas at constant temperature. What is the change in the energy of the
12
gas?

Solution. Because the energy of an ideal gas depends only on the temperature (see (2.23)), there
is no change in its internal energy for an isothermal process. Hence, AE =0 = @ + W, and from
(2.15) we have
V
Q=-W=NkTn 72 (isothermal process, ideal gas) (2.25)
1
We see that if work is done on the gas (Vo < V1), then the gas must give energy to its surroundings
so that its temperature does not change. O

Extensive and intensive variables. The thermodynamic variables that we have introduced so
far may be divided into two classes. Quantities such as the density p, the pressure P, and the
temperature 1" are intensive variables and are independent of the size of the system. Quantities
such as the volume V' and the internal energy E are extensive variables and are proportional to
the number of particles in the system (at fixed density). As we will see in Section 2.10, it often
is convenient to convert extensive quantities to a corresponding intensive quantity by defining the
ratio of two extensive quantities. For example, the energy per particle and the energy per unit
mass are intensive quantities.

2.10 Heat Capacities and Enthalpy

We know that the temperature of a macroscopic system usually increases when we transfer energy
to it by heating.!> The magnitude of the increase in temperature depends on the nature of the
body and how much of it there is. The amount of energy transfer due to heating required to
produce a unit temperature rise in a given substance is called the heat capacity of the substance.
Here again we see the archaic use of the word “heat.” But because the term “heat capacity” is
common, we will use it. If a body undergoes an increase of temperature from 73 to 7% due to an
energy transfer (), then the average heat capacity is given by the ratio

Q

—_—- 2.2
T2 _ Tl ( 6)

average heat capacity =

The value of the heat capacity depends on what constraints are imposed. We introduce the heat
capacity at constant volume by the relation

Oy = (g—g)v. (2.27)

12We mean the internal energy, as should be clear from the context. In the following we will omit the term internal
and simply refer to the energy.
13 What is a common counterexample?
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Note that if the volume V' is held constant, the change in energy of the system is due only to
the energy transferred by heating. We have adopted the common notation in thermodynamics of
enclosing partial derivatives in parentheses and using subscripts to denote the variables that are
held constant. In this context, it is clear that the differentiation in (2.27) is at constant volume,
and we will write Cyy = OE/OT if there is no ambiguity.!* (See Section 2.24.1 for a discussion of
the mathematics of thermodynamics.)

Equation (2.27) together with (2.23) can be used to obtain the heat capacity at constant
volume of a monatomic ideal gas:

Cy = gNk. (monatomic ideal gas) (2.28)

Note that the heat capacity at constant volume of an ideal gas is independent of the temperature.

The heat capacity is an extensive quantity, and it is convenient to introduce the specific
heat which depends only on the nature of the material, not on the amount of the material. The
conversion to an intensive quantity can be achieved by dividing the heat capacity by the amount
of the material expressed in terms of the number of moles, the mass, or the number of particles.
We will use lower case c¢ for specific heat; the distinction between the various kinds of specific heats
will be clear from the context and the units of c.

The enthalpy. The combination of thermodynamic variables E + PV occurs sufficiently often to
acquire its own name. The enthalpy H is defined as

H=F+ PV. (enthalpy) (2.29)

We can use (2.29) to find a simple expression for Cp, the heat capacity at constant pressure.
From (2.13) and (2.21), we have dE = dQ — PdV or dQQ = dE + PdV. From the identity,
d(PV) = PdV + VdP, we can write dQ = dE + d(PV) — VdP. At constant pressure dQ =
dE +d(PV)=d(E+ PV) = dH. Hence, we can define the heat capacity at constant pressure as

on )P (2.30)

Cp = ( e
P=\or
We will learn that the enthalpy is another state function which often makes the analysis of a system

simpler. At this point, we can see that C'p can be expressed more simply in terms of the enthalpy.

We can find Cp for an ideal gas by writing H = F + PV = %NKT + NET and using the
relation (2.30) to find that Cp = 2Nk, and thus

Cp=Cv+ Nk (ideal gas) (2.31)

Note that we used the two equations of state, (2.8) and (2.23), to obtain Cp, and we did not have
to make an independent measurement or calculation.

Why is Cp greater than Cy? Unless we prevent it from doing so, a system normally expands
as its temperature increases. The system has to do work on its surroundings as it expands. Hence,
when a system is heated at constant pressure, energy is needed both to increase the temperature of

4 Although the number of particles also is held constant, we will omit the subscript N in (2.27) and in other
partial derivatives to reduce the number of subscripts.
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the system and to do work on its surroundings. In contrast, if the volume is kept constant, no work
is done on the surroundings and the heating only has to supply the energy required to raise the
temperature of the system. We will derive the general relation C'p > Cy for any thermodynamic
system in Section 2.22.

Problem 2.12. Heat capacities large and small

Give some examples of materials that have either a small or a large heat capacity relative to
that of water. You can find values of the heat capacity in books on materials science and on the
internet. O

Example 2.4. Heating water

A water heater holds 150 kg of water. How much energy is required to raise the water temperature
from 18°C to 50°C?

Solution. The (mass) specific heat of water is ¢ = 4184 J /kg K. (The difference between the specific
heats of water at constant volume and constant pressure is negligible at room temperatures.) The
energy required to raise the temperature by 32°C is

Q = mec(Ty — T1) = 150kg x (4184 J/kgK) x (50°C — 18°C) =2 x 107 J. (2.32)
We have assumed that the specific heat is constant in this temperature range. O

Note that when calculating temperature differences, it is often more convenient to express
temperatures in Celsius, because the kelvin is exactly the same magnitude as a degree Celsius.

Example 2.5. Cooling a brick

A 1.5kg glass brick is heated to 180°C and then plunged into a cold bath containing 10 kg of water
at 20°C. Assume that none of the water boils and there is no heating of the surroundings. What
is the final temperature of the water and the glass? The specific heat of glass is approximately
750 J/kg K.

Solution. Conservation of energy implies that
AEjglass + Aijatcr = 07 (2333)

or
MglassCglass (T - Tglass) + MyaterCwater (T - Twatcr) =0. (233b)

The final equilibrium temperature T is the same for both. We solve for T and obtain

T — mglasscglassTglass + mwatcrcwatchwatcr (234&)
MglassCglass + Muwater Cwater
_ (1.5kg)(750 J /kg K)(180°C) + (10 kg) (4184 /kg K)(20°C) (2.34h)
(1.5kg)(750 J kg K) + (10 kg) (4184 J /kgK) '

=24.2°C. (2.34c)
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Example 2.6. Energy needed to increase the temperature

The temperature of two moles of helium gas is increased from 10°C to 30°C at constant volume.
How much energy is needed to accomplish this temperature change?

Solution. Because the amount of He gas is given in moles, we need to know its molar specific heat.
Helium gas can be well approximated by an ideal gas so we can use (2.28). The molar specific heat
is given by (see (2.11)) ¢y = 3R/2 = 1.5 x 8.314 = 12.5 J/mole K. Because cy is constant, we have

J
= X 20K =5001. (2.35)

mole

AE=Q :/CvdT = ch/dT = 2mole x 12.5

O

Example 2.7. A solid at low temperatures

At very low temperatures the heat capacity of an insulating solid is proportional to T3. If we take
C = AT? for a particular solid, what is the energy needed to raise the temperature from T} to T5?
The difference between Cy and Cp can be ignored at low temperatures. (In Section 6.9, we will use
the Debye theory to express the constant A in terms of the speed of sound and other parameters
and find the range of temperatures for which the T3 behavior is a reasonable approximation.)

Solution. Because C' is temperature dependent, we have to express the energy transferred as an
integral:

Ts
Q= C(T)dT. (2.36)
T
In this case we have
T> A
Q:A/ T3dT = Z(TQ‘*—T;*). (2.37)
T
O

Problem 2.13. In Example 2.1 we showed that the net work done on the gas in the cyclic process
shown in Figure 2.4 is non-zero. Assume that the gas is ideal with IV particles and calculate the
energy transfer by heating in each step of the process. Then explain why the net work done on
the gas is negative and show that the net change of the internal energy is zero. O

2.11 Quasi-Static Adiabatic Processes

So far we have considered processes at constant temperature, constant volume, and constant pres-
sure.'® We have also considered adiabatic processes which occur when the system does not exchange
energy with its surroundings due to a temperature difference. Note that an adiabatic process need
not be isothermal.

5 - ; . . . .
15These processes are called isothermal, isochoric, and isobaric, respectively.
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Problem 2.14. Give some examples of adiabatic processes. O

We now show that the pressure of an ideal gas changes more for a given change of volume in

a quasistatic adiabatic process than it does in an isothermal process. For an adiabatic process the
first law reduces to

dE = dW = —PdV. (adiabatic process) (2.38)

In an adiabatic process the energy can change due to a change in temperature or volume and thus

oOF OFE
dE = (ﬁ)v dT + (W)T av. (2.39)
The first derivative in (2.39) is equal to Cy. Because (OE/OV)r = 0 for an ideal gas, (2.39)
reduces to
dE = CydT = —PdV, (adiabatic process, ideal gas) (2.40)

where we have used (2.38). The easiest way to proceed is to eliminate P in (2.40) using the ideal

gas law PV = NKT:

CydT = —Nde7V (2.41)

We next eliminate Nk in (2.41) in terms of Cp — Cy and express (2.41) as
Cy dT L dr _ av

R ) 2.42
Cp—Cy T y—1T %4 ( )
The symbol « is the ratio of the heat capacities:
Cp
= 2.43
= o (2.43)

For an ideal gas C'y and C'p and hence v are independent of temperature, and we can integrate
(2.42) to obtain
TV7~! = constant. (quasistatic adiabatic process) (2.44)

For an ideal monatomic gas, we have from (2.28) and (2.31) that Cy = 3Nk/2 and Cp =
5NFk/2, and hence
v=5/3. (ideal monatomic gas) (2.45)

Problem 2.15. Use (2.44) and the ideal gas pressure equation of state in (2.8) to show that in a

quasistatic adiabatic processes P and V are related as

PV7 = constant. (2.46)

Also show that T and P are related as
TPU=1/7 = constant. (2.47)

O
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Figure 2.5: Comparison of an isothermal and an adiabatic process. The two processes begin at the
same volume V7, but the adiabatic process has a steeper slope and ends at a higher pressure.

The relations (2.44)—(2.47) hold for a quasistatic adiabatic process of an ideal gas.!® Because
v > 1, the relation (2.46) implies that for a given volume change, the pressure changes more for an
adiabatic process than it does for a comparable isothermal process for which PV = constant. We
can understand the reason for this difference as follows. For an isothermal compression the pressure
increases and the internal energy of an ideal gas does not change. For an adiabatic compression
the energy increases because we have done work on the gas and no energy can be transferred by
heating or cooling by the surroundings. The increase in the energy causes the temperature to
increase. Hence in an adiabatic compression, both the decrease in the volume and the increase in
the temperature cause the pressure to increase faster.

In Figure 2.5 we show the P-V diagram for both isothermal and adiabatic processes. The
adiabatic curve has a steeper slope than the isothermal curves at any point. From (2.46) we see
that the slope of an adiabatic curve for an ideal gas is

oP P
oV =y 2.48
(8‘/ )adiabatic v Vv ’ ( )
in contrast to the slope of an isothermal curve for an ideal gas:
or r
W)V 24
(6V )T %4 (2.49)

How can the ideal gas relations PV? = constant and PV = NkT both be correct? The answer
is that PV = constant only for an isothermal process. A quasistatic ideal gas process cannot be
both adiabatic and isothermal. During an adiabatic process, the temperature of an ideal gas must
change. Note that PV = NET is valid for an ideal gas during any process, but care must be
exercised in using this relation because any of the four variables, P, V', N, and T' can change in a
given process.

16 An easier derivation is suggested in Problem 2.24.
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Problem 2.16. Although we do work on an ideal gas when we compress it isothermally, why does
the energy of the gas not increase? O

Example 2.8. Adiabatic and isothermal expansion

Two identical systems each contain v = 0.1 mole of an ideal gas at 7' = 300 K and P = 2.0 x 10° Pa.
The pressure in the two systems is reduced by a factor of two allowing the systems to expand, one
adiabatically and one isothermally. What are the final temperatures and volumes of each system?
Assume that v = 5/3.
Solution. The initial volume V7 is given by

vRT7  0.1mole x 8.3J/(Kmole) x 300K

Vi = = =1.245 x 103 m?>. 2.50
) 2.0 x 10° Pa ” m (2.50)

For the isothermal system, PV remains constant, so the volume doubles as the pressure
decreases by a factor of two and hence V5 = 2.49 x 1073 m?. Because the process is isothermal,

the temperature remains at 300 K.

For adiabatic compression we have

Py
vV, = —=L 2.51
2 P2 ) ( )
or P 1/
Vo = (Fl) TVL =235 % 1.245 x 10 m® = 1.89 x 10~% m®. (2.52)
2

We see that for a given pressure change, the volume change for the adiabatic process is greater.
We leave it as an exercise to show that 7o = 250K. O

Problem 2.17. Compression of air

Air initially at 20°C is compressed by a factor of 15.

(a) What is the final temperature assuming that the compression is adiabatic and v ~ 1.4,'7 the
value of v for air in the relevant range of temperatures? By what factor does the pressure
increase?

(b) By what factor does the pressure increase if the compression is isothermal?

(c) For which process does the pressure change more? O

How much work is done in a quasistatic adiabatic process? Because Q = 0, AE = W. For an
ideal gas, AE = Cy AT for any process. Hence for a quasistatic adiabatic process

W =Cy(Ty — Th). (quasistatic adiabatic process, ideal gas) (2.53)

In Problem 2.18 you are asked to show that (2.53) can be expressed in terms of the pressure and
volume as
PV, — PV

W:
v—1

(2.54)

TThe ratio v equals 5/3 only for an ideal gas of particles with spherical symmetry. We will learn in Section 6.2.1
how to calculate v for molecules with rotational and vibrational contributions to the energy.
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Problem 2.18. Work done in a quasistatic adiabatic process

(a) Use the result which we derived in (2.53) to obtain the alternative form (2.54).

(b) Show that another way to derive (2.54) is to use the relations (2.14) and (2.46). O

Example 2.9. Compression ratio of a Diesel engine

Compression in a Diesel engine occurs quickly enough so that very little heating of the environment
occurs and thus the process may be considered adiabatic. If a temperature of 500°C is required
for ignition, what is the compression ratio? Assume that the air can be treated as an ideal gas
with v = 1.4, and the temperature is 20°C before compression.

Solution. Equation (2.44) gives the relation between T and V for a quasistatic adiabatic process.
We write 17 and Vi and T and V5 for the temperature and volume at the beginning and the end
of the piston stroke. Then (2.46) becomes

vy =TV (2.55)
Hence the compression ratio V4 /Vs is

Vi (E)l/m—l) _ (773K)1/0~4 0

= —— 2.
Vs Ty 293K (2:56)

It is only an approximation to assume that the compression is quasistatic in a Diesel engine. ¢

2.12 The Second Law of Thermodynamics

The consequences of the first law of thermodynamics are that energy is conserved in thermal
processes and heating is a form of energy transfer. We also noted that the internal energy of a
system can be identified with the sum of the potential and kinetic energies of the particles.

As was discussed in Chapter 1, there are many processes that do not occur in nature, but
whose occurrence would be consistent with the first law. For example, the first law does not
prohibit energy from being transferred spontaneously from a cold body to a hot body, yet it has
never been observed. There is another property of systems that must be taken into account, and
this property is called the entropy.'®

Entropy is another example of a state function. One of the remarkable achievements of the
nineteenth century was the reasoning that such a state function must exist without any idea of how
to measure its value directly. In Chapter 4 we will learn about the relation between the entropy
and the number of possible microscopic states, but for now we will follow a logic that does not
depend on any knowledge of the microscopic behavior.

It is not uncommon to use heating as a means of doing work. For example, power plants burn
oil or coal to turn water into steam which in turn turns a turbine in a magnetic field creating
electricity which then can do useful work in your home. Can we completely convert all the energy

18 This thermodynamic variable was named by Rudolf Clausius in 1850 who formed the word entropy (from the
Greek word for transformation) so as to be as similar as possible to the word energy.
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Figure 2.6: A machine that converts energy transferred by heating into work with 100% efficiency
violates the Kelvin statement of the second law of thermodynamics.

created by chemical reactions into work? Can we cool a system and use all the energy lost by the
system to do work? Our everyday experience tells us that we cannot. If it were possible, we could
power a boat to cross the Atlantic by cooling the sea and transferring energy from the sea to drive
the propellers. We would need no fuel and travel would be much cheaper. Or instead of heating a
fluid by doing electrical work on a resistor, we could consider a process in which a resistor cools the
fluid and produces electrical energy at its terminals. The fact that these processes do not occur is
summarized in one of the statements of the second law of thermodynamics:

It is impossible to construct an engine which, operating in a cycle, will produce no other
effect than the extraction of heat from a reservoir and the performance of an equivalent
amount of work (Kelvin-Planck statement).!®

This form of the second law implies that a perpetual motion machine of the second kind does not
exist. Such a machine would convert heat completely into work (see Figure 2.6).

What about the isothermal expansion of an ideal gas? Does this process violate the second
law? When the gas expands, it does work on the piston which causes the gas to lose energy.
Because the process is isothermal, the gas must absorb energy so that its internal energy remains
constant. (The internal energy of an ideal gas depends only on the temperature.) We have

AE=Q+W =0. (2.57)

We see that W = —@Q, that is, the work done on the gas is —W and the work done by the gas
is Q. We conclude that we have completely converted the absorbed energy into work. However,
this conversion does not violate the Kelvin-Planck statement because the macrostate of the gas is
different at the end than at the beginning, that is, the isothermal expansion of an ideal gas is not
a cyclic process. We cannot use this process to make an engine.

19The original statement by Kelvin is “It is impossible by means of inanimate material agency to derive mechanical
effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects.”
Planck wrote “It is impossible to construct an engine, which working in a complete cycle, will produce no effect
other than the raising of a weight and the cooling of a heat reservoir.” See Zemansky and Dittman, p. 147.
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Another statement of the second law based on the empirical observation that energy does not
spontaneously go from a colder to a hotter body can be stated as

No process is possible whose sole result is cooling a colder body and heating a hotter
body (Clausius statement).

The Kelvin-Planck and the Clausius statements of the second law look different, but each statement
and the first law implies the other so their consequences are identical.

A more abstract version of the second law that is not based directly on experimental obser-
vations, but that is more convenient in many contexts, can be expressed as

There exists an additive function of state known as the entropy S that can never decrease
in an isolated system.

Because the entropy cannot decrease in an isolated system, we conclude that the entropy is a
mazimum for an isolated system in equilibrium.?° The term additive means that if the entropy of
two systems is S4 and Sp, respectively, the total entropy of the combined system is S =S4 + Sp.
In the following we adopt this version of the second law and show that the Kelvin and Clausius
statements follow from it.

The statement of the second law in terms of the entropy is applicable only to isolated systems
(a system enclosed by insulating, rigid, and impermeable walls). Most systems of interest can
exchange energy with their surroundings. In many cases the surroundings may be idealized as
a large body that does not interact with the rest of the universe. For example, we can take the
surroundings of a cup of hot water to be the air in the room. In this case we can treat the composite
system, system plus surroundings, as isolated. For the composite system, we have for any process

AScompositc Z O; (258)

where Scomposite 15 the entropy of the system plus its surroundings.

If a change is reversible, we cannot have AScomposite > 0, because if we reverse the change we
would have AScomposite < 0, a violation of the Clausius statement as we shall soon see. Hence, the
only possibility is that

AScomposite = 0. (reversible process) (2.59)

To avoid confusion, we will use the term reversible to be equivalent to a constant entropy process.
The condition for a process to be reversible requires only that the total entropy of a closed system
is constant; the entropies of its parts may increase or decrease.

2.13 The Thermodynamic Temperature

The Clausius and Kelvin-Planck statements of the second law arose from the importance of heat
engines to the development of thermodynamics. A seemingly different purpose of thermodynamics

20Maximum and minimum principles are ubiquitous in physics. Leonhard Euler wrote that “Nothing whatsoever
takes place in the universe in which some relation of maximum and minimum does not appear.”
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is to determine the conditions of equilibrium. These two purposes are linked by the fact that
whenever there is a difference of temperature, work can be extracted.

In the following we derive the properties of the thermodynamic temperature from the sec-
ond law. In Section 2.16 we will show that this temperature is the same as the ideal gas scale
temperature introduced in Section 2.2.

Consider an isolated composite system that is partitioned into two subsystems A and B by a
fixed, impermeable, insulating wall. For the composite system we have

E = E4 + Ep = constant, (2.60)

V =V4 + Vp = constant, and N = N4 + Np = constant. Because the entropy is additive, we can
write the total entropy as

S(EA7 VA7NA7EBu VB7NB) = SA(EA7VA7NA) + SB(EB7VB7NB) (261)

Most divisions of the energy E4 and Ep between subsystems A and B do not correspond to thermal
equilibrium.

For thermal equilibrium to be established we replace the fixed, impermeable, insulating wall by
a fixed, impermeable, conducting wall so that the two subsystems are in thermal contact and energy
transfer by heating or cooling may occur. We say that we have removed an internal constraint.
According to our statement of the second law, the values of E4 and Ep will be such that the
entropy of the composite system becomes a maximum. To find the value of F4 that maximizes S
as given by (2.61), we calculate

0Sa 0SB

a8 = (522) . dBa+ (52)  dEs. 2.62
OFEA/VA,NA At O0FEB /vy ,Ng B ( )
Because the total energy of the system is conserved, we have dEp = —dE 4, and hence
054 0SB
as = [(522) —(522) . |aBa. 2.63
OEA/Va,Na OFEp /vp,Ng 4 ( )
The condition for equilibrium is that dS = 0 for arbitrary values of dE4, and hence
0S4 0Sp
— = (== . 2.64
(8EA)VA,NA (8EB)VB,NB ( )

Because the temperatures of the two systems are equal in thermal equilibrium, we conclude that
the derivative 0S/0F must be associated with the temperature. We will find that it is convenient
to define the thermodynamic temperature 1" as

1 oS
T = (8_E)V v (thermodynamic temperature) (2.65)

which implies that the condition for thermal equilibrium is

1 1

- = 2.
== 7 (266)

or TA = TB.
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We have found that if two systems are separated by a conducting wall, energy will be trans-
ferred until the systems reach the same temperature. Now suppose that the two systems are
initially separated by an insulating wall and that the temperatures of the two systems are almost
equal with Ty > Tp. If this constraint is removed, we know that energy will be transferred across
the conducting wall and the entropy of the composite system will increase. From (2.63) we can
write the change in entropy of the composite system as

1 1
AS ~ [T—A - T—B]AEA >0, (2.67)

where T4 and Tp are the initial values of the temperatures. The condition that T4 > T, requires
that AE4 < 0 in order for AS > 0 in (2.67) to be satisfied. Hence, we conclude that the definition
(2.65) of the thermodynamic temperature implies that energy is transferred from a system with a
higher value of T' to a system with a lower value of T'.

We can express (2.67) as: No process exists in which a cold body becomes cooler while a hotter
body becomes still hotter and the constraints on the bodies and the state of its surroundings are
unchanged. We recognize this statement as the Clausius statement of the second law.

Note that the inverse temperature can be interpreted as the response of the entropy to a
change in the energy of the system. In Section 2.17 we will derive the condition for mechanical
equilibrium, and in Chapter 7 we will discuss the condition for chemical equilibrium. These two
conditions complement the condition for thermal equilibrium. All three conditions must be satisfied
for thermodynamic equilibrium to be established.

The definition (2.65) of T is not unique, and we could have replaced 1/T by other functions
of temperature such as 1/72 or 1/y/T. However, we will find in Section 2.16 that the definition
(2.65) implies that the thermodynamic temperature is identical to the ideal gas scale temperature.

2.14 The Second Law and Heat Engines

A body that can change the temperature of another body without changing its own temperature
and without doing work is known as a heat bath. The term is archaic, but we will adopt it because
of its common usage.?! A heat bath can be either a heat source or a heat sink. Examples of a heat
source and a heat sink depending on the circumstances are the Earth’s ocean and atmosphere. If
we want to measure the electrical conductivity of a small block of copper at a certain temperature,
we can place it into a large body of water that is at the desired temperature. The temperature of
the copper will become equal to the temperature of the large body of water, whose temperature
will be unaffected by the copper.
For pure heating or cooling the increase in the entropy is given by
oS

ds = (a_E)v,N dE. (2.68)

In this case dE = d@ because no work is done. If we express the partial derivative in (2.68) in
terms of T', we can rewrite (2.68) as

_ 49
- =

21The terms thermal bath and heat reservoir are also used.

ds (pure heating) (2.69)
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We emphasize that the relation (2.69) holds only for quasistatic changes. Note that (2.69) implies
that the entropy does not change in a quasistatic, adiabatic process.

We now use (2.69) to discuss the problem that motivated the development of thermodynamics
— the efficiency of heat engines. We know that an engine converts energy from a heat source to
work and returns to its initial state. According to (2.69), the transfer of energy from a heat source
lowers the entropy of the source. If the energy transferred is used to do work, the work done must
be done on some other system. Because the process of doing this work may be quasistatic and
adiabatic, the work done need not involve a change of entropy. But if all of the energy transferred is
converted into work, the total entropy would decrease, and we would violate the entropy statement
of the second law. Hence, we arrive at the conclusion summarized in the Kelvin-Planck statement
of the second law: no process is possible whose sole result is the complete conversion of energy into
work. We need to do something with the energy that was not converted to work.

The simplest possible engine works in conjunction with a heat source at temperature T}z, and
a heat sink at temperature Tioy. In a cycle the heat source transfers energy Quign to the engine,
and the engine does work W and transfers energy Qow to the heat sink (see Figure 2.7). At the
end of one cycle, the energy and entropy of the engine are unchanged because they return to their
original values.

We have defined the work W done on a system as positive. However, in the context of engines,
it is more natural to define the work done by the system as positive because that work is the output
of the system. Hence, in this section we will take Qnigh, Qlow, and W to be positive quantities,
and explicitly put in minus signs where needed. From the arrows in Figure 2.7 we see that the
input to the engine is Qnignh and the output is W and Qiow. Hence, we have Qnigh = W + Qiow, OF
W = Qnigh — Qiow, From the second law we have that

AStotal - AShigh + ASlow = _M + M Z 0. (270)
Thigh Tlow
We rewrite (2.70) as
Qlow ﬂow
—_ > . 2.71
Qnigh ~ Thign (2.71)

The thermal efficiency n of the engine is defined as

- what you obtain (2.72)
what you pay for
W Quignh — Qlow 1 Qiow

Qnigh Qnigh Qhigh

From (2.73) we see that the engine is most efficient when the ratio Qiow/@nign is as small as
possible. Equation (2.71) shows that Qiow/Qnign is @ minimum when the cycle is reversible or

(2.73)

ASiotal = 0, (2.74)

and
Qlow o ﬂow

Qnigh  Thign

(2.75)
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heat source

Thigh

heat sink
T

low

Figure 2.7: Schematic energy transfer diagram for an ideal heat engine. The convention in the
context of analyzing energy transfers in the context of engines is that the quantities Qnigh, Qlow,
and W are taken to be positive.

For these conditions we find that the maximum thermal efficiency is

ﬂOW

n=1- . (maximum thermal efficiency) (2.76)
Thigh
Note that the temperature in (2.76) is the thermodynamic temperature. A reversible engine of

this type is known as a Carnot engine.

The result (2.76) illustrates the remarkable power of thermodynamics. We have concluded
that all reversible engines operating between a heat source and a heat sink with the same pair of
temperatures have the same efficiency and that no irreversible engine working between the same
pair of temperatures may have a greater efficiency. This statement is known as Carnot’s principle.
We have been able to determine the maximum efficiency of a reversible engine without knowing
anything about the details of the engine.

Real engines never reach the maximum thermodynamic efficiency because of the presence of
mechanical friction and because the processes cannot really be quasistatic. For these reasons, real
engines seldom attain more than 30-40% of the maximum thermodynamic efficiency. Nevertheless,
the basic principles of thermodynamics are an important factor in their design.

Example 2.10. A Carnot engine
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A Carnot engine extracts 250J from a heat source and rejects 100J to a heat sink at 15°C in
one cycle. How much work does the engine do in one cycle? What is its efficiency? What is the
temperature of the heat source?

Solution. From the first law we have
W =250J —100J = 150J. (2.77)

The efficiency is given by
w 150
— =— =0.6 =60%. 2.78
7 Quian 250 % (278)

We can use this result for n and the general relation (2.76) to solve for Thigh:

Tow 288 K
Meh T T 106 (2:79)

Note that we must use the thermodynamic temperature to calculate the efficiency. %

Example 2.11. The efficiency of a hypothetical engine

The cycle of a hypothetical engine is illustrated in Figure 2.8. Let Pioyw = 1 x 10°Pa, Pyign =
2 x 10°Pa, Vigw = 5 x 1072 m?, and Vign = 25 x 1073 m3. If the energy absorbed by heating the
engine is 5 x 10*J, what is the efficiency of the engine?

Solution. The magnitude of the work done by the engine equals the area enclosed:
1
W = §(Phigh - Plow)(vhigh - Viow)- (280)

(Recall that the convention in the treatment of heat engines is that all energy transfers are taken
to be positive.) Confirm that W = 1 x 10*J. The efficiency is given by

W 1x10t
Qabsorbed 5x 104

n =0.20. (2.81)

Note that even if the engine operated reversibly, we cannot use the Carnot efficiency because
we have no assurance that the engine is operating between two heat baths. O

The maximum efficiency of a Carnot engine depends on the temperatures Thigh and Tiow
in a simple way and not on the details of the cycle or working substance. The Carnot cycle is
a particular sequence of idealized processes that yields the maximum thermodynamic efficiency
given in (2.76). The four steps of the Carnot cycle (two adiabatic and two isothermal steps) are
illustrated in Figure 2.9. The initial state is at 1. The system is in contact with a heat bath at
temperature Thien so that the temperature of the system also is Thigh. The system volume is small
and its pressure is high.

1 — 2, Isothermal expansion. The system expands while it is in contact with the heat source.
During the expansion the high pressure gas pushes on the piston and the piston turns a
crank. This step is a power stroke of the engine and the engine does work. To keep the
system at the same temperature, the engine must absorb energy from the heat source.
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P A
Phigh [T~ """~~~
1
1
Pow [~~~ ~~——- !
ow 1 1
1 1
| |
1 1
1 1
1 1 »
Viow Vhigh V

Figure 2.8: The cycle of the hypothetical engine considered in Example 2.11. Take Py, = 1 X
10° Pa, Phigh = 2 % 10% Pa, Vigw = 5 x 1073 m3, and Vhigh = 25 X 10~3 m?.

We could compress the system isothermally and return the system to its initial state.
Although this step would complete the cycle, exactly the same amount of work would be
needed to push the piston back to its original position and hence no net work would be done.
To make the cycle useful, we have to choose a cycle so that not all the work of the power
stroke is lost in restoring the system to its initial pressure, temperature, and volume. The
idea is to reduce the pressure of the system so that during the compression step less work
has to be done. One way of reducing the pressure is to lower the temperature of the system
by doing an adiabatic expansion.

2 — 3, Adiabatic expansion. We remove the thermal contact of the system with the hot bath
and allow the volume to continue to increase so that the system expands adiabatically. Both
the pressure and the temperature of the system decrease. The step from 2 — 3 is also a
power stroke, but now we are cashing in on the energy stored in the system, because it can
no longer take energy from the heat source.

3 — 4, Isothermal compression. We now begin to restore the system to its initial condition.
At 3 the system is placed in contact with the heat sink at temperature Tjoy, to ensure that the
pressure remains low. Work is done on the system by pushing on the piston and compressing
the system. As the system is compressed, the temperature of the system would rise, but
the thermal contact with the heat sink ensures that the temperature remains at the same
temperature Tiow. The extra energy is dumped into the heat sink.

4 — 1, Adiabatic compression. At 4 the volume is almost what it was initially, but the
temperature of the system is too low. Before the piston returns to its initial state, we remove
the contact with the heat sink and allow the work of adiabatic compression to increase the
temperature of the system to Thigh.

These four steps represent a complete cycle and the idealized engine is ready to go through
another cycle. Note that a net amount of work has been done, because more work was done by the
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Figure 2.9: The four steps of the Carnot cycle.

system during its power strokes than was done on the system while it was compressed. The reason
is that the work done during the compression steps was against a lower pressure. The result is
that we have extracted useful work, and some of the energy of the system was discarded into the
heat sink while the system was being compressed. The price we have had to pay to do work by
having the system heated by the heat source is to throw away some of the energy to the heat sink.

Example 2.12. The Carnot cycle for an ideal gas

Determine the changes in the various thermodynamic quantities of interest during each step of the
Carnot cycle and show that the efficiency of a Carnot cycle whose working substance is an ideal
gas is given by 7 = 1 — Tiow/Thigh-

Solution. We will use the PV diagram for the engine shown in Figure 2.9. During the isothermal
expansion from 1 to 2, energy Qnign is absorbed by the gas by heating at temperature Thizn. The
expanding gas does positive work against its environment, which lowers the energy of the gas.
However, AE = 0 for an ideal gas along an isotherm and thus the gas must receive energy by
heating given by

Vi
Qnigh = |Wi—2| = NkTign In (2.82)

2
‘/1,
where Wi_,90 = — f‘zz PdV is the work done on the gas, which is negative. The work done by the
gas is thus positive.

During the adiabatic expansion from 2 — 3, Q23 = 0 and Wa_3 = |Cv(Tiow — Thign)|-
Similarly, Ws_.4 = —NkTiow In Vy/V3, and because Q0w is positive by convention, we have

Vi
ow — NkTow In —
Q1 ‘ low In 77

— Nk In 2. (2.83)
Vi
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Finally, during the adiabatic compression from 4 — 1, Q4—1 = 0 and Wy_1 = |Cv (Tiow — Thigh)|-
We also have Whet = Qnigh — Qlow, Where Wie, Qnigh, and Qiow are positive quantities.

Because the product TV'~! is a constant in a quasistatic adiabatic process, we have

ThighVs ' = TiowVs " (2.84a)
TiowVy ™' = ThignVy (2.84b)
which implies that
Vo V3
- =T 2.85
The net work is given by
V-
Whet = thgh - Qlow = Nk(Thigh - ﬂow) In Vi (286)

The efficiency is given by
o Wnct o Thigh - Tllow —1_ Tllow
Qnigh Thigh Thigh’

n (2.87)

as we found previously by general arguments. O
Problem 2.19. A Carnot refrigerator

A refrigerator cools a closed container and heats the outside room surrounding the container.
According to the second law of thermodynamics, work must be done by an external body for this
process to occur. Suppose that the refrigerator extracts the amount Q.,q from the container at
temperature Tioq and transfers energy Qnot at temperature Thot to the room. The external work
supplied is W (see Figure 2.10). We define the coefficient of performance (COP) as

COP — what you get Qcold'

= 2.88
what you pay for W ( )

Show that the maximum value of the COP corresponds to a reversible refrigerator and is given by

Tcold
COP = ———. 2.89
Thot - Tcold ( )
Note that a refrigerator is more efficient for smaller temperature differences. O

Problem 2.20. Heat pump

A heat pump works on the same principle as a refrigerator, but the goal is to heat a room by
cooling its cooler surroundings. For example, we could heat a building by cooling a nearby body
of water. If we extract energy Qcolq from the surroundings at T 14, do work W, and deliver Qo
to the room at Ty, the coefficient of performance is given by

COP — what you get _ Qhot' (2.90)

what you pay for W
What is the maximum value of COP for a heat pump in terms of Tq1q and Thot? What is the COP
when the outside temperature is 0°C and the interior temperature is 23°C? Is it more effective
to operate a heat pump during the winters in New England where the winters are cold or in the
Pacific Northwest where the winters are relatively mild? (It is too bad that the maximum efficiency
of a heat pump occurs when it is needed least.) |
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Qcold

refrigerator
T

cold

Figure 2.10: The transfer of energy in an idealized refrigerator.

2.15 Entropy Changes

The impetus for developing thermodynamics was the industrial revolution and the efficiency of en-
gines. The key to thermodynamics is understanding the role of entropy changes. In this section we
apply the techniques of thermodynamics to calculating entropy changes to a variety of macroscopic
systems. We begin with an example.

Example 2.13. Change in entropy of a solid

The heat capacity of water and solids at room temperatures is independent of temperature to a
good approximation. A solid with the constant heat capacity C' is taken from an initial temperature
T to a final temperature T5. What is its change in entropy? (Ignore the small difference in the
heat capacities at constant volume and constant pressure.)

Solution. We assume that the temperature of the solid is increased by putting the solid in contact
with a succession of heat baths at temperatures separated by a small amount AT such that we
can use the quasistatic result dS = dQ/T. Then the entropy change is given by

2 40 2 dT
Sy — S :/ == = C(T) —. 2.91
e=S=] 7 . ()T (2.91)
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Because the heat capacity C' is assumed to be constant, we find
AS=95,—-5=C — =Cln=—. (2.92)

Even though we used a specific quasistatic process, the change in entropy would be the same for
any process that took the solid from the same initial state to the same final state. Note that if
Ty < Ty, the entropy of the solid is decreased. In Example 2.15 we consider the change in entropy
of a larger composite system consisting of a liquid and a heat bath. O

How can we measure the entropy of a solid? We know how to measure the temperature and
the energy, but we have no entropy meter. Instead we have to determine the entropy indirectly. If
the volume is held constant, we can determine the entropy difference between two temperatures by
doing many successive measurements of the heat capacity and by doing the integral in (2.91). Note
that such a determination gives only the entropy difference. We will discuss how to determine the
absolute value of the entropy under certain conditions in Section 2.20.

Example 2.14. Entropy change due to thermal contact

A solid with heat capacity C'a at temperature T4 is placed in contact with another solid with heat
capacity C'p at a lower temperature T5. What is the change in entropy of the system after the
two bodies have reached thermal equilibrium?

Solution. Assume that the heat capacities are independent of temperature and the two solids are
isolated from their surroundings.

From Example 2.5 we know that the final equilibrium temperature is given by

_ CATy+CpTp

T = 2.93
Ca+Cp (2.93)

Although the process is irreversible, we can calculate the entropy change by considering any process
that takes a body from one temperature to another. For example, we can imagine that a body is
brought from its initial temperature T’p to the temperature 7' in many successive infinitesimal steps
by placing it in successive contact with a series of heat baths at infinitesimally greater temperatures.
At each contact the body is arbitrarily close to equilibrium and has a well defined temperature.
For this reason, we can apply the result (2.92) which yields AS4 = C4InT/T4. The total change
in the entropy of the system is given by

ASZASA-FASB:CAIDE-FCBHIE, (2.94)
Ty Tp

where T is given by (2.109). Substitute real numbers for T, Ts, Ca, and Cg and convince yourself
that AS > 0. Does the sign of AS depend on whether Ty > Tg or Ty < Tp? O

Example 2.15. Entropy change of water in contact with a heat bath

One kilogram of water at Ty = 0°C is brought into contact with a heat bath at Tp = 50°C. What
is the change of entropy of the water, the heat bath, and the combined system consisting of the
water and the heat bath?
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Solution. The change in entropy of the water is given by

273 4+ 50

Tp
ASy =Cln=2 = 4184 J/Kln 22T 2°
A=y MK om0

=704 J/K. (2.95)

Why does the number 273 enter in (2.95)7 The amount of energy transferred to the water from
the heat bath is
Q = C(Tp — Ts) = 4184 /K x 50K = 209,000 J. (2.96)

The change in entropy of the heat bath is
—Q 209200J

ASp = Ts = 33K = —648 J/K. (2.97)

Hence the total change in the entropy is
AS =AS,+ASp=704J/K—-648J/K = 56 J/K. (2.98)
Note that AS is positive. O

Problem 2.21. Water in contact with two heat baths in succession

The temperature of one kilogram of water at 0°C is increased to 50°C by first bringing it into
contact with a heat bath at 25°C and then with a heat bath at 50°C. What is the change in
entropy of the entire system? How does this change in entropy compare with the change that was
found in Example 2.157 |

Example 2.16. More on the nature of a heat bath

A heat bath is a much larger system whose temperature remains unchanged when energy is added
or subtracted from it. As an example we first consider two systems with constant volume heat
capacities C'4 and Cp that are initially at different temperatures T4 and Tg. What happens when
the two systems are placed in thermal contact (and are isolated from their surroundings)? The
volume of the two systems is fixed and the heat capacities are independent of temperature. We
will consider the general case and then take the limit Cp — oc.

From (2.109) the final temperature 7' can be written as
Cy Cg

T=Gcrc Tt e e Tr (2.99)
We define the ratio L Ca 2100)
Cp’ '
and rewrite (2.99) as
T G Gl P TR S
-t (ATa +Ts). (2.101b)

14+
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In the limit A — 0 corresponding to system B becoming a heat bath we see from (2.101b) that
T="Tg.

The total change in the entropy is given by (2.94). The first term gives

ASA:CAIHEHCAIHT—B, (2.102)
T T

in the limit that system B is treated as a heat bath. To evaluate the second term in (2.94) we
write

% - H%(l—i-/\%) ~ (1—)\)(1+/\§—’;) (2.1034)
~ 1+)\(§:—2 —1), (2.103b)

where we have used the approximation (1 +z)~! ~ 1 — z, and kept terms through order \. We
have T . T T
ASp=Cpln— — Cagn [1+A(72 = 1)] = Ca (72 - 1), 2.104
B BHTB—> Ay + Tn —>ATB ( )
where we have used the approximation In(1 + x) ~ x. Hence, the total change in the entropy of
the system is given by

T | Ta
AS =Ca[lnz2+ 2 —1]. 2.105
a7z + Ty ( )
In Problem 2.61 you will be asked to show that AS in (2.105) is always greater than zero for
Ty #Tp. O

Problem 2.22. Use the numerical values for various quantities from Example 2.15 to show that
(2.105) gives the same numerical result as (2.98). O

Example 2.17. Melting of ice

A beaker contains a 0.1 kg block of ice at 0°C. Suppose that we wait until the ice melts and then
comes to room temperature. What is the change of entropy of the ice to water? (It takes 334kJ
to melt 1kg of ice.)

Solution. If we add energy to ice by heating at its melting temperature 7" = 273.15 K at atmospheric
pressure, the effect is to melt the ice rather than to raise its temperature.

We melt the ice by supplying 0.1kg x 334kJ/kg = 33,400J from a heat bath at 273.15K,
assuming that the ice is in equilibrium with the air in the room which acts as a heat bath. Hence,
the entropy increase due to the melting of the ice is given by AS = 33,400/273.15 = 122.2 J/K.

The change in the entropy to bring the water from 0°C to room temperature, which we take
to be 22°C, is (0.1 x 4184)1n295/273 = 32.4J/K. Thus, the total change in entropy of the ice to
water at room temperature is 122.2 4+ 32.4) = 154.6 J/K. O

Example 2.18. Entropy change in a free expansion

Consider an ideal gas of N particles in a closed, insulated container that is divided into two
chambers by an impermeable partition (see Figure 2.11). The gas is initially confined to one
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/ partition

Figure 2.11: The free expansion of an isolated ideal gas. The second chamber is initially a vacuum
and the total volume of the two chambers is V5.

chamber of volume V; at a temperature 7. The gas is then allowed to expand freely into a vacuum
to fill the entire container of volume V5. What is the change in entropy?

Solution. Because the composite system of two chambers has rigid impermeable walls, no energy
leaves or enters the composite system either by heating or by work. Hence, there is no change in
the internal energy of the gas. It might be argued that AS = Q/T = 0 because Q = 0. However,
this conclusion would be incorrect because the relation dS = d@Q/T holds only for a quasistatic
process.

The expansion from Vj to V5, is an irreversible process. Left to itself, the system will not
return spontaneously to its original state with all the particles in the left container. Because the
entropy is a state function, we can consider another process that takes the system to the same
final state. This process should be quasistatic so that we can use thermodynamics and also take
place at constant energy because there is no change in energy during the free expansion of an ideal
gas. Suppose that the two chambers are separated by a moveable partition with a nonzero mass.
Because the partition has mass, the gas does work on the partition to increase its volume by an
amount AV’; that is, work —PAV is done on the gas. Because we want the final state of the gas
to have the same energy as the initial state, we need to simultaneously add energy to the gas by
heating. Because the gas is ideal, the internal energy depends only on the temperature, and hence
the temperature of the ideal gas is unchanged. Hence, dE = T'dS — PdV =0, or

IAE 1 (V' NkT
AS:—/ PdV:—/ —dV:NklnE. (2.106)
T V2 T V2 V Vl
Hence, the entropy increases as expected. O

The discussion of the free expansion of an ideal gas illustrates two initially confusing aspects
of thermodynamics. As mentioned, the name thermodynamics is a misnomer because thermody-
namics treats only equilibrium states and not dynamics. Nevertheless, thermodynamics discusses
processes that must happen over some interval of time. Also confusing is that we can consider
processes that did not actually happen. In this case the calculation of AS in Example 2.18 is
identical to what we would do for an isothermal non-adiabatic quasistatic process where the gas
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does work, even though in the actual process no work was done by the gas and no heating or
cooling occurred. However, the initial and final states and the change in the entropy are the same
for the actual process and the calculated process.

Quasistatic adiabatic processes. We have already discussed that quasistatic adiabatic processes
have the special property that the entropy does not change, but we repeat this statement here
to emphasize its importance. If a process is adiabatic, then @@ = 0, and if the process is also
quasistatic, then AS = @Q/T = 0, and there is no change in the entropy.

Quasistatic processes are subtle. Consider again the free expansion of an ideal gas. Initially
the gas is confined to one chamber and then allowed to expand freely into the second chamber
to fill the entire container. It is certainly not quasistatic, and thus AS > 0, even though @ = 0.
Suppose that we imagine this process to be performed very slowly by dividing the second chamber
into many small chambers separated by partitions and puncturing each partition in turn, allowing
the expanded gas to come into equilibrium. It might seem that in the limit of an infinite number of
partitions that such a process would be quasistatic. However, this conclusion is incorrect because
it would imply that dS = dQ/T = 0.

Note that an infinitesimal process is not necessarily quasistatic. The puncture of a partition
would cause the wall to move suddenly, thus creating turbulence and causing changes that are not
near equilibrium. Also the work done by the gas in a quasistatic process is dW = PdV, but no
work is done even though PdV # 0. The expansion of a gas into a vacuum is not quasistatic no
matter how slowly it is performed, and the process is not reversible, because the gas will never
return to its original volume.

Example 2.19. Maximum work
When two bodies are placed in thermal contact, no work is done, that is, AW = 0 and AF =
Q4+ Qp =0. How can we extract the maximum work possible from the two bodies?

Solution. From our discussion of heat engines, we know that we should not place them in thermal
contact. Instead we run a Carnot (reversible) engine between the two bodies. However, unlike the
heat baths considered in the Carnot engine, the heat capacities of the two bodies are finite, and
hence the temperature of each body changes as energy is transferred from one body to the other.

To extract the maximum work we assume that the process is reversible and write
AS =AS4+ ASp =0. (2.107)

If we assume that the heat capacities are constant, it follows using (2.91) that

T T
In — In— =0. 2.1
C’AnTA—I—CB nTB 0 (2.108)
We solve (2.108) for T" and find that
T — TEA/(CAJrCB) TgB/(CA‘FCB)' (2.109)

We see that the final temperature for a reversible process is the geometrical average of T4 and Tz
weighted by their respective heat capacities. O
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Problem 2.23. More work

(a) Show that the work performed by the heat engine in Example 2.19 is given by
WZCA(TA—T)+CB(TB—T), (2.110)

where C'4 and Cp are constants and T is given by (2.109) if the process is reversible. (Recall
that our convention is to consider the work done on a system, except when we are discussing
heat engines.)

(b) Suppose that C4 = Cp = C (a constant independent of T') in (2.93) and (2.109). Compare
the form of the expressions for the final temperature.

(¢) Suppose that Ty = 256 K and Ts = 144 K. What are the relative values of the final tempera-
tures in (2.93) and (2.109) assuming that the heat capacities of the two bodies are equal? For
which process is the final temperature lower? Why?

(d) Suppose that the heat capacities of both bodies depend linearly on the temperature T rather
than being constant; that is, Cy = AT and Cz = BT, where A and B are constants. What is
the final temperature assuming that the two bodies are placed in thermal contact? What is the
final temperature for the case when the maximum work is extracted? What is the maximum
work done? O

Are all forms of energy equivalent? If you were offered 100J of energy, would you choose to
have it delivered as compressed gas at room temperature or as a hot brick at 400 K? If you are
not sure what you want to do with the energy, you should take the form of the energy that can be
most directly converted into work, because there is no restriction on the efficiency of using stored
energy for heating. What is different is the quality of the energy, which we take to be a measure of
its ability to do work. We can readily convert energy from higher to lower quality, but the second
law of thermodynamics prevents us from going in the opposite direction with 100% efficiency.

As an example consider the adiabatic free expansion of an ideal gas from a volume V; to
volume V. As we found in Example 2.18, the entropy increase is AS = NkInV2/V;. If we had
instead let the gas undergo a quasistatic isothermal expansion, the work done by the gas would
have been W = NkT InV5/V;, which is the same as TAS for the adiabatic free expansion. Thus,
an increase in entropy implies that some energy has become unavailable to do work.

2.16 Equivalence of Thermodynamic and Ideal Gas Scale
Temperatures

So far we have assumed that the ideal gas scale temperature which we introduced in Section 2.4
is the same as the thermodynamic temperature defined by (2.65). We now show that the two
temperatures are proportional and can be made equal if we choose the units of S appropriately.

The ideal gas temperature scale, which we denote as # in this section to distinguish it from
the thermodynamic temperature T, is defined by the relation

§ = PV/Nk. (2.111)
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That is, 6 is proportional to the pressure of a gas at a fixed low density and is equal to 273.16 K
at the triple point of water. The fact that 6 oc P for a dilute gas is a matter of definition. Another
important property of ideal gases is that the internal energy depends only on # and is independent
of the volume.

To show the equivalence between T" and € we need to consider a process for which we have a
general result involving the thermodynamic temperature that is independent of the nature of the
system involved in the process. We can then specialize to the ideal gas. The only example we have
so far is the Carnot cycle. At every stage of the cycle we have

dQ dE—dW _ dE+ PdV

; ; T (2.112)
or

dQ dE av

& = TNk (2.113)

The first term on the right-hand side of (2.113) depends only on 6 and the second term depends
only on the volume. If we integrate (2.113) around one cycle, both 6 and V' return to their starting
values, and hence the loop integral of the right-hand side of (2.113) is zero. We conclude that

dQ
7{7 = 0. (2.114)

Because the only places where ) is nonzero is at the hot and cold heat baths which are held at
constant temperatures, we have
o Qcold _ Qhot

Ocold  Onot

In Section 2.14 we showed that Qcola/@not = Teold/Thot for a Carnot engine (see (2.75)). If we
combine this result with (2.115), we find that

0

= 0. (2.115)

Tcold o ecold
Thot Hhot

(2.116)

It follows that the thermodynamic temperature T is proportional to the ideal gas scale temperature
f. From now on we shall assume that we have chosen suitable units for S so that T = 6.

2.17 The Thermodynamic Pressure

In Section 2.13 we showed that the thermodynamic definition of temperature follows by considering
the condition for the thermal equilibrium of two subsystems. In the following, we show that the
pressure can be defined in an analogous way and that the pressure can be interpreted as a response
of the entropy to a change in the volume.

As before, consider an isolated composite system that is partitioned into two subsystems. The
subsystems are separated by a movable, insulating wall so that the energies and volumes of the
subsystems can adjust themselves, but N4 and Np are fixed. For simplicity, we assume that E4
and Ep have already changed so that thermal equilibrium has been established. For fixed total
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volume V' we have one independent variable, which we take to be Va; Vi is given by Vg =V — Vj4.
The value of V4 that maximizes S =S4 + Sp is given by

054 0SB
dS = —dV, —dVp = 0. 2.117
ava AT v P (2.117)
Because dV4 = —dVp, we can use (2.117) to write the condition for mechanical equilibrium as
S S
24 28 (2.118)
oVy 0Vp
We define the thermodynamic pressure P as
P
T = (g_‘S/)EN (definition of thermodynamic pressure) (2.119)

Note that the presence of 1/7" in the definition of pressure makes the units come out correctly.
We will see in the next section that the factor of 1/7" is needed to be consistent with the relation
dE =TdS — PdV.

For completeness, we define the chemical potential as the response of the entropy to a change
in the number of particles:

a8
- (W)EV . (definition of the chemical potential) (2.120)

ol
T

We will discuss the interpretation of p in Section 4.12. You probably won’t be surprised to learn
that if two systems can exchange particles, then the equality of the chemical potential u is the
condition for chemical equilibrium.

We will sometimes distinguish between thermal equilibrium, mechanical equilibrium, and
chemical equilibrium for which the temperatures, pressures, and chemical potentials are equal,
respectively. When all three conditions are satisfied, a system is in thermodynamic equilibrium.

2.18 The Fundamental Thermodynamic Relation

The first law of thermodynamics implies that the internal energy F is a function of state. For any
change of state, the change in F is given by (2.183):

AE=Q+W. (any process) (2.121)

To separate the contributions to F due to heating and work, the constraints on the system have
to be known. If the change is quasistatic, then the infinitesimal work done is

dW = —PdV, (quasistatic process) (2.122)

and
dQ = TdS. (quasistatic process) (2.123)
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Thus, for an infinitesimal quasistatic change in the energy we have

dE = TdS — PdV. (2.124)

There are two ways of thinking about (2.124). As our derivation suggests this equation tells us
the relation between changes in the energy, entropy, and volume. Alternatively, we can interpret
(2.124) as the differential form (for fixed N) of the fundamental equation F = E(S,V, N). Because
S =S(E,V,N) is also a state function and because we defined T', P, and p in terms of derivatives
of S, we rewrite (2.124) as

1 P
dS = =dE + =dV. 2.12
S T + T V. ( 5)
We also have 55 55 oy
ds = (8_E)V,N dE + (W)EN v+ (8—N)EV dn. (2.126)

A comparison of (2.125) and (2.126) gives the familiar results 1/7 = (0S/0E)y,n and P/T =
(0S/0V) g, (see (2.65) and (2.119)). If we allow N to vary we can use (2.120) and write

1 P I
dS = =dFE + —=dV — =dN. 2.12
S T + T V T (2.127)

If we know the entropy S as a function of E, V', and N, we can determine the corresponding
responses 1, P, and p. For this reason we shall refer to E, V, and N as the natural variables in
which S should be expressed. In this context S can be interpreted as a thermodynamic potential
because its various partial derivatives yield the equations of state of the system. In Section 2.21
we shall discuss thermodynamic potentials that have different sets of natural variables.

We can alternatively consider E as a function of S, V, and N and rewrite (2.127) as

‘ dE =TdS — PdV + pdN. ‘ (fundamental thermodynamic relation) (2.128)

Equation (2.128) is a mathematical statement of the combined first and second laws of thermo-
dynamics. There are very few equations in thermodynamics that are necessary to memorize, but
(2.128) is one of the few equations that you should know without thinking.

Many useful thermodynamic relations can be derived using (2.128). For example, if we regard
E as a function of S, V, and N, we can write

dE = (g—?)m ds + (g—g)mdwr (g—ﬁ)wdzv. (2.129)
If we compare (2.128) and (2.129), we see that
T= (g_g)V,N P= _(g_g)S,N #= (S_JL\?T)SV (2.130)

Note that E(S,V, N) also can be interpreted as a thermodynamic potential.
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2.19 The Entropy of an Ideal Classical Gas

Because we know two equations of state of an ideal gas, (2.8) and (2.23), we can find the entropy
of an ideal classical gas as a function of various combinations of E, T, P, and V for fixed N. If we
substitute 1/7' = 2Nk/E and P/T = Nk/V into (2.127), we obtain

3 dE dv
dS = SNk— + Nk (2.131)

We can integrate (2.131) to obtain the change in the entropy from state Ey, V) to state Fs, Va:

3 ) Va
AS = =-Nkln — + Nkln —. 2.132
We see that S is an additive quantity as we have assumed; that is, S is proportional to N,

Frequently it is more convenient to express S in terms of 7" and V or T and P. To obtain
S(T,V) we substitute E = 2 NkT into (2.132) and obtain

3 T V:
AS =ZNkln=2 + Nkln—=.  (ideal gas) (2.133)
2 T |4

Problem 2.24. Applications of (2.133)

(a) Use (2.133) to derive the relation (2.44) between T and V for a quasistatic adiabatic process.

(b) An ideal gas of N particles is confined to a box of chamber V; at temperature T. The gas
is then allowed to expand freely into a vacuum to fill the entire container of volume V5. The
container is thermally insulated. What is the change in entropy of the gas?

(c¢) Find AS(T, P) for an ideal classical gas. O

2.20 The Third Law of Thermodynamics

Only differences in the entropy can be calculated using purely thermodynamic relations as we
did in Section 2.19. We can define the absolute value of the entropy by using the third law of
thermodynamics which states that

%imOS =0. (third law of thermodynamics) (2.134)

The statistical basis of this law is discussed in Section 4.6. In the context of thermodynamics, the
third law can be understood only as a consequence of empirical observations.

The most important consequence of the third law is that all heat capacities must go to zero
as the temperature approaches zero. For changes at constant volume, we know that (see (2.91))

S(Ty, V) — S(Ty, V) = /T b CVT(T) dr. (2.135)
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The condition (2.134) implies that in the limit 73 — 0, the integral in (2.135) must be finite, and
hence we require that Cy (T') — 0 as T — 0. Similarly, we can argue that Cp — 0 as T — 0. Note
that these conclusions about the low temperature behavior of Cy and Cp are independent of the
nature of the system. Such is the power of thermodynamics. The low temperature behavior of the
heat capacity was first established experimentally in 1910-1912.

As we will find in Section 4.6, the third law is a consequence of the fact that the most
fundamental description of nature at the microscopic level is quantum mechanical. We have already
seen that the heat capacity is a constant for an ideal gas. Hence, the thermal equation of state,
FE = %NkT, as well as the pressure equation of state, PV = NET', must cease to be applicable at
sufficiently low temperatures.

Example 2.20. Low temperature entropy of an insulating solid

At very low temperature T, the heat capacity C of an insulating solid is proportional to T3. If we
take C' = AT? for a particular solid, what is the entropy of the solid at temperature T'?

Solution. As before, the entropy is given by (see (2.91)):

T

Cv (T

S(T) = / ﬁdT, (2.136)
0 T

where we have used the fact that S(T' = 0) = 0. We can integrate the right-hand side of (2.136)

from T = 0 to the desired value of T to find the absolute value of S. The result in this case is

S = AT3/3. O

2.21 Free Energies

We know that the entropy of an isolated system can never decrease. However, an isolated system
is of little experimental interest, and we wish to consider the more typical case where the system
of interest is connected to a much larger system, a heat bath, whose properties do not change
significantly. In the following we will consider a heat bath whose temperature and pressure are
unchanged by interactions with a much smaller system.

If a system is connected to a heat bath, then the entropy of the system may increase or
decrease. The only thing we can say for sure is that the entropy of the system plus the heat bath

must increase or remain unchanged. Because the entropy is additive, we have??
Scompositc =5+ Sbath7 (2137)
and
AScompositc =AS+ ASbath > 0. (2138)

The properties of the system of interest are denoted by the absence of a subscript. Our goal is to
determine if there is a property of the system alone (not the composite system) that is a maximum

22The following discussion is adapted from Mandl, pp. 89-92.
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or a minimum. We begin by writing the change ASpatn in terms of the properties of the system.
Because energy can be transferred between the system and heat bath, we have

—Q

b
Thath

ASpath = (2.139)
where @ is the amount of energy transferred to the system by heating, and —(@ is the amount
of energy transferred to the heat bath. If we use (2.139) and the fundamental thermodynamic
relation, (2.128), we can rewrite (2.138) as

AScomposite =AS - Q . (2140)
Thath
The application of the first law to the system gives
AE=Q+ W, (2.141)

where AFE is the change in the energy of the system and W is the work done on it. If the work
done on the system is due to the heat bath, then W = —P,,1, AV, where AV is the change in
volume of the system. Then we can write

AE —-W AFE + Pyan AV
AScomposite =AS— ——=AS5—- —+ bath > 0. (2142)
Thatn Thatn
A little algebra leads to
AFE + Pyatn AV — Than AS < 0. (2143)

This result suggests that we define the availability by
A=FE+ PyatnV — Than S, (2.144)
so that (2.143) becomes
AA = AE + Poatn AV — Thatn AS < 0. (2.145)
The availability includes properties of both the system and the heat bath. The significance of the

availability will be discussed in the following.

We now look at some typical experimental situations and introduce a quantity that depends
only on the properties of the system. First, we assume that its volume and number of particles is
fixed, and that its temperature equals the temperature of the heat bath; that is, we set Thath = T
and AV = 0. In this case we have

AA=AE—-TAS =AF <0, (2.146)

where we have defined the Helmholtz free energy as

F=E-TS. (2.147)

The inequality in (2.146) implies that if a constraint within the system is removed, then the system’s
Helmholtz free energy will decrease. Just as AS > 0 and S(E,V, N) is a maximum at equilibrium,
AF < 0and F(T,V,N) is a minimum at equilibrium. Thus, F' plays the analogous role for systems
at constant 7' and V' that was played by the entropy for an isolated system (constant E and V).
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What are the natural variables for F? From our discussion it should be clear that these
variables are 7', V', and N. The answer can be found by taking the differential of (2.147) and using
(2.128). The result is

dF = dE — SdT — TdS (2.148a)
= (TdS — PdV + pdN) — SdT — TdS (2.148b)
= —8dT — PdV + pdN. (2.148c¢)

We substituted dE = T'dS — PdV + udN to go from (2.148a) to (2.148¢). From (2.148) we see that
F =F(T,V,N) and that S, P, and u can be obtained by taking appropriate partial derivatives of
F'. For example,

5= _(g_?)v,zv’ (2.149)

p= —(g—‘lj)T)N (2.150)
and

p= (g—g)w. (2.151)

The Helmholtz free energy is an example of a free energy or thermodynamic potential.

We can relax the condition of a fixed volume by requiring that the pressure be specified. In
this case mechanical equilibrium requires that the pressure of the system equal the pressure of the
bath. This case is common in experiments with fluids where the pressure is fixed at atmospheric
pressure. We write Pyaen = P and express (2.143) as

AA=AE+ PAV — TAS = AG < 0, (2.152)

where we have defined the Gibbs free energy as

G=E-TS+PV=F+PV. (2.153)

The natural variables of G can be found in the same way as we did for F. We find that G =
G(T,P,N) and

dG = dE — SdT — TdS + PdV + VdP (2.154a)
= (TdS — PdV + pdN) — SdT — TdS + PdV + VdP (2.154b)
= —SdT + VdP + pdN. (2.154c)

We can use similar reasoning to conclude that G is a minimum at fixed temperature, pressure, and
number of particles.

We can also relate GG to the chemical potential by noting that G and N are extensive variables
(see Section 2.9), but T and P are not. Thus, G must be proportional to N:

G = Ny(T, P), (2.155)

23 A more formal way of obtaining the various thermodynamic potentials is given in Section 2.24.2.
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where g(T', P) is the Gibb’s free energy per particle. This function must be the chemical potential
because dG/ON = ¢(T,P) from (2.155) and dG/ON = p from (2.154). Thus, the chemical
potential is the Gibbs free energy per particle:

u(T, P) = % = g(T, P). (2.156)

Because g depends only on 7" and P, we have

. (9g dg
dg = dp = (8P)po+ (8T)PdT (2.157)
= vdP — sdT, (2.158)

where v = V/N and s = S/N. Equation (2.158) is called the Gibbs-Duhem equation. The properties
of G and the relation (2.158) will be important when we discuss processes involving a change of
phase (see Section 7.3).

Another common thermodynamic potential is the enthalpy H which we defined in (2.29). This
potential is similar to E(S,V, N) except for the requirement of fixed P rather than fixed V.

Problem 2.25. The enthalpy

(a) Given the definition of the enthalpy in (2.29) show that

dH =TdS + VdP + pdN, (2.159)

and
w= (g_ﬁ)s,p' (2.162)
(b) Show that H is a minimum for an equilibrium system at fixed entropy. O

Landau potential. A very useful thermodynamic potential is the thermodynamic potential for
which the variables T', V', and p are specified. This potential has no generally recognized name or
symbol, but is sometimes called the Landau potential and is usually, but not always, denoted by (2.
Another common name is simply the grand potential. We will adopt the notation 2 and refer to
Q as the Landau potential in honor of Lev Landau. The Landau potential is the thermodynamic
potential for which the variables T', V', and u are specified and is given by

‘ Q(T,V,pu) = F — uN. (2.163)

If we take the derivative of Q and use the fact that dF' = —SdT — PdV + udN (see (2.148)), we
find that

dQ = dF — pdN — Ndp (2.164a)
= —SdT — PdV — Ndy. (2.164b)
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Name Potential Differential Form
Internal energy E(S,V,N) dE =TdS — PdV + pdN
1 P I

Entropy S(E,V,N) as = TdE + TdV - TdN
Enthalpy H(S,P,N) = + PV | dH =TdS + VdP + udN
Helmholtz free energy | F(T,V,N)=FE —-TS | dF = —=SdT — PdV + pudN
Gibbs free energy G(T,P,N) = F + PV | dG = —=SdT + VdP + udN
Landau potential QT,V,u)=F —uN | dQ=—SdT — PdV — Ndu

79

Table 2.2: Summary of the common thermodynamic potentials, their natural variables, and their
differential form. From the differential forms we can easily write down various thermodynamic

quantities as partial derivatives of the appropriate potential. For example, N = —(9/0u)r,v.
From (2.164b) we have
o0
s=-(5) - 2.165
oT Vi, ( )
o0
P=- ( —) . 2.166
oV T, ( )
o0
N = —(—) . (2.167)
ou/Tv

Because G = Ny, we can write 2 = F'— (. Hence, if we use the definition G = F + PV, we obtain

QT,V,p)=F —uN =F—G = —PV. (2.168)

The relation (2.168) will be very useful for obtaining the equation of state of various systems (see
Section 6.8).

Table 2.2 summarizes the important thermodynamic potentials and their natural variables.

*Useful work and availability. The free energies that we have introduced are useful for under-
standing the maximum amount of useful work, Wigetul, that can be done by a system when it is
connected to a heat bath. The system is not necessarily in thermal or mechanical equilibrium with
its surroundings. In addition to the system of interest and its surroundings (the bath), we include
a third body, namely, the body on which the system does useful work. The third body is thermally
insulated. The total work Wi, done by the system is the work done against its surroundings,
Poatn AV plus the work done on the body, Wisetul:

Wby = PbathAV + Wuseful- (2169)

Because Why is the work done by the system when its volume changes by AV, the first term in
(2.169) does not contain a negative sign. This term is the work that is necessarily and uselessly
performed by the system in changing its volume and thus also the volume of its surroundings. The
second term is the useful work done by the system. In (2.143) we replace the work done on the
heat bath, Pp.th AV, by the total work done by the system Poatn AV + Wigetul to obtain

AE + PbathAV + Wuscful - TbathAS S O; (2170)
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or the useful work done is
Wisetul < —(AE + Poath AV — TbathAS) = —AA, (2.171)

Note that the maximum amount of useful work that can be done by the system is equal to —AA.
This relation explains the meaning of the terminology availability because only —AA is available
for useful work. The rest of the work is wasted on the surroundings.

Problem 2.26. Maximum useful work and free energy changes

(a) Show that if the change in volume of the system is zero, AV = 0, and the initial and final
temperature are that of the heat bath, then the maximum useful work is —AF'.

(b) Show that if the initial and final temperature and pressure are that of the bath, then the
maximum useful work is —AG. O

2.22 Thermodynamic Derivatives

All thermodynamic measurements can be expressed in terms of partial derivatives. For example,
the pressure P can be expressed as P = —9F/9V. Let us suppose that we make several thermo-

dynamic measurements, for example, Cy, Cp, and &, the isothermal compressibility. The latter is
defined as

1,0V . .
K=-3 ( 8_P)T . (isothermal compressibility) (2.172)

Suppose that we wish to know the (isobaric) thermal expansion coefficient «, which is defined as

1,0V
a=—=|=] . thermal expansion coefficient 2.173

% ( oT )P ( P ) ( )
(The number of particles N is assumed to be held constant in the above derivatives.) Do we need
to make an independent measurement of a or can we determine v by knowing the values of Cy, Cp,
and k? To answer this question and related ones, we first need to know how to manipulate partial
derivatives. This aspect of thermodynamics can be confusing when first encountered.

Thermodynamic systems normally have two or more independent variables. For example, we
can choose the combination E, V, N or T, P, N. Because there are many choices of combinations
of independent variables, it is important to be explicit about which variables are independent
and which variables are being held constant in any partial derivative. We suggest that you read
Section 2.24.1 to review of some of the properties of partial derivatives. The following example
illustrates the power of purely thermodynamic arguments based on the manipulation of thermo-
dynamic derivatives.

Example 2.21. Thermodynamics of blackbody radiation

In Section 6.7 we show from first principles some of the basic results of blackbody radiation. In
particular, we show that u, the energy per unit volume, is proportional to T* (see (6.139a)). In the
following we obtain this result using thermodynamic arguments and two reasonable assumptions.
The arguments might be difficult to follow if you are not familiar with blackbody radiation. The
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point of the example in this context is that the formalism of thermodynamics plus a few assumptions
can lead to new results. The following derivation was first given by Boltzmann in 1884.

Solution. The two assumptions are that u depends only on 7" and the radiation exerts a pressure

on the walls of the cavity given by

p- %U(T). (2.174)

Equation (2.174) follows directly from Maxwell’s electromagnetic theory and is obtained in Sec-
tion 6.7 from first principles (see Problem 6.25).

We start from the fundamental thermodynamic relation dE = T'dS — PdV, and write it as

dE P
dS = — + —dV. 2.175

We let E = Vu, substitute dE' = Vdu + udV and the relation (2.174) into (2.175), and write

|4 U 1u V du 4u
From (2.176) we have
08 4u
— ) == 2.177
(57). =37 (2.177)
08 V du
— === 2.177b
(8T )v Tdr (2.177b)
Because the order of the derivatives is irrelevant, 925/0V AT and §*S/0TOV are equal. Hence, we
obtain: 40 5 VN d
u u
(=)= (=) =. 2.178
sor(7) = ov (7) ar @179)

Next we assume that u depends only on T and perform the derivatives in (2.178) to find

411 du u 1 du
=== = =— 2.179
3 [T dT T2} TdT’ ( )
which reduces to i
u u
— =4 2.1
dT T (2.180)

If we assume the form u(7T) = aT™ and substitute it in (2.180), we find that this form is a solution
for n = 4:

w(T) = aT™. (2.181)
The constant a in (2.181) cannot be determined by thermodynamic arguments.

We can obtain the entropy by using the first partial derivative in (2.177). The result is

4
S = 3—TVu(T) + constant. (2.182)

The constant of integration in (2.182) must be set equal to zero to make S proportional to V.
Hence, we conclude that S = 4aVT3/3. O
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Example 2.21 illustrates the power of thermodynamic arguments and indicates that it would
be useful to relate various thermodynamic derivatives to one another. The Mazwell relations,
which we derive in the following, relate the various thermodynamic derivatives of E, F', G, and H
to one another and are useful for eliminating quantities that are difficult to measure in terms of
quantities that can be measured directly. We will see that the Maxwell relations can be used to
show that the internal energy and enthalpy of an ideal gas depend only on the temperature. We
also will answer the question posed in Section 2.22 and relate the coefficient of thermal expansion
to other thermodynamic derivatives.

We start with the thermodynamic potential E(S,V, N) and write
dE = TdS — PdV + udN. (2.183)

In the following we will assume that N is a constant for simplicity. From (2.183) we have that

T = (g—g)v, (2.184)
and
P= —(2—5)3. (2.185)

Because the order of differentiation is irrelevant, we obtain from (2.184) and (2.185)

0%E 0%E
ovos — 9Sov’ (2.186)
or
oT oP
(W)S - _(%)V' (2.187)

Equation (2.187) is one of the Maxwell relations. The other Maxwell relations are obtained in
Problem 2.27.

Problem 2.27. More Maxwell relations

From the differentials of the thermodynamic potentials:

dF = —SdT — PdV (2.188)
dG = —SdT + VdP (2.189)
dH =TdS + VdP, (2.190)
derive the Maxwell relations:
oS oP
-~ — (= 2.191
(5v). = GGy (2.191)
oS ov
(55)r == (57)s (2.192)
oT oV
) =(ZZ) . 2.1
(6P )S ( oS )P (2.193)
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Also consider a variable number of particles to derive the Maxwell relations

(g_x)p - (%)N’ (2.194)

and
(%)N - _(g_]i)v' (2.195)
O

The Maxwell relations depend on our identification of (0E/9S)y with the temperature, a
relation that follows from the second law of thermodynamics. The Maxwell relations are not
purely mathematical in content, but are different expressions of the second law. In the following,
we use these relations to derive some useful relations between various thermodynamic quantities.

Internal energy of an ideal gas. We first show that the internal energy E of an ideal gas is a
function only of T' given the pressure equation of state, PV = NET. That is, if we consider F as a
function of T and V', we want to show that (OE/0V)r = 0. From the fundamental thermodynamic
relation, dE = T'dS — PdV, we see that (OE/OV ) can be expressed as

oF as
=) =7(57) -P 2.196
(8V)T ov/r ( )
Note the importance of specifying which quantity is being held constant when taking a partial
derivative. The quantity (0E/0V)s = —P is clearly different from (0E/0V)r. To show that E

is a function of T only, we need to show that the right-hand side of (2.196) is zero. The term
involving the entropy in (2.196) can be rewritten using the Maxwell relation (2.191):

OF oP
— ) =T(==) —-P 2.197
(6V )T (6T )v ( )
Because (OP/0T)y = P/T for an ideal gas, we see that the right-hand side of (2.197) is zero.

Problem 2.28. Show that the enthalpy of an ideal gas is a function of T" only. O

Relation between heat capacities. As we have seen, it is much easier to calculate the heat
capacity at constant volume than at constant pressure. However, it is usually easier to measure
the heat capacity at constant pressure. For example, most solids expand when heated, and hence it
is easier to make measurements at constant pressure. In the following, we derive a thermodynamic
relation that relates Cy and Cp. Recall that

o= (%), ~7(2), s
and
o= (38, ~1(25), iy

We consider S as a function of T" and P and write

ds = (g—i)P dT + (g—}z)T dP, (2.199)
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and take the partial derivative with respect to temperature at constant volume of both sides of

(2499 oS oS 0S\ (9P
() = (&7 + (35): (57), (2200)
We then use (2.198) to rewrite (2.200) as
7 =7+ G (ar) 220

Because we would like to express C'p — Cy in terms of measurable quantities, we use the Maxwell
relation (2.192) to eliminate (0S/JP) and rewrite (2.201) as:

Cp—Cy = T(Z—?)P (Z—I;)V . (2.202)

We next use the identity (see (2.238)),

(?)_;)P (g_jz)v (g_g)T =5 (2:203)
to eliminate (OP/0T)y and write:
Cp—Cy = —T(g—‘lj)T (g_;); (2.204)

If we substitute the definitions (2.172) of the isothermal compressibility x and (2.173) for the
thermal expansion coefficient «, we obtain the desired general relation:

T
Cp—Cy = VEOF. (2.205)

For an ideal gas we have k = 1/P and a = 1/T and (2.205) reduces to (see (2.31))

Cp — Cy = Nk. (2.206)

Although we will not derive these conditions here, it is plausible that the heat capacity and
compressibility of equilibrium thermodynamic systems must be positive. Given these assumptions,
we see from (2.205) that Cp > Cy in general.

2.23 *Applications to Irreversible Processes

Although the thermodynamic quantities of a system can be defined only when the system is in
equilibrium, we have found that it is possible to obtain useful results for systems that pass through
nonequilibrium states if the initial and final states are in equilibrium. In the following, we will
consider some well known thermodynamic processes.
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(a) (b)

Figure 2.12: (a) A gas is kept in the left half of a box by a partition. The right half is evacuated.
(b) The partition is removed and the gas expands irreversibly to fill the entire box.

2.23.1 The Joule or free expansion process

In a Joule or free expansion the system expands into a vacuum while the entire system is thermally
isolated (see Figure 2.12). The quantity of interest is the temperature change that is produced.
Although this process is irreversible, we have learned that it can be treated by thermodynamics.
Because d@ = 0 and dW = 0, the energy is a constant so that dE(T,V) = 0. This condition can

be written as
dE = (g—g)v dT + (g—g)T dv = 0. (2.207)

Hence, we obtain

(g_g)E - _%7 (2.208)
‘CLV[T(Z—;)V -7 (2.209)

Equation (2.209) follows from the definition of Cy and from (2.197). The partial derivative
(0T'/0V ) is known as the Joule coefficient. For a finite change in volume, the total tempera-
ture change is found by integrating (2.209):

AT = —/VVCLV {T(g—i)v - P} dv. (2.210)

Because (OP/0T)y = P/T for an ideal gas, we conclude that the temperature of an ideal
gas is unchanged in a free expansion. If the gas is not dilute, we expect that the intermolecular
interactions are important and that the temperature will change in a free expansion.

Problem 2.29. Free expansion of a van der Waals gas

Calculate (0T/0V)g for the van der Waals energy equation of state (2.24) and show that a free
expansion results in cooling. O
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The cooling of a gas during a free expansion can be understood by the following qualitative
argument. In a real gas there is an attractive force between the molecules or atoms, which leads
to the total potential energy of the gas being negative. As the gas expands, the attractive force
becomes weaker, and the total potential energy becomes less negative, that is, it increases. As a
result, the kinetic energy must decrease to keep the total energy constant. Because the temperature
is proportional to the kinetic energy per particle, the temperature will also decrease. This free
expansion process is used in refrigeration.

2.23.2 Joule-Thomson process

The Joule-Thomson (or Joule-Kelvin?* or porous plug) process is a steady state process in which
a gas is forced through a porous plug or expansion valve from a region of high pressure P; to a
region of lower pressure P (see Figure 2.13). The gas is thermally isolated from its surroundings.
The process is irreversible because the gas is not in equilibrium. We will see that a real gas is
either cooled or heated by passing through the plug.

Consider a given amount (for example, one mole) of a gas that occupies a volume V; at pressure
P, on the left-hand side of the valve and a volume V5 at pressure P, when the gas arrives on the
right-hand side. The work done on the gas is given by

0 Vo
Ww=—[ Pav —/ Pav. (2.211)
i 0

The pressure on each side of the porous plug is constant, and hence we obtain
W =PV, — PVs,. (2.212)

Because the process takes place in an isolated tube, there is no energy transfer due to heating, and
the change in the internal energy is given by

AE =FEy—FE =W =P Vi — PVs. (2.213)
Hence, we obtain
Ey + PBVo = Ey + PV, (2.214)
which can be written as
Hy = H;. (2.215)

That is, the Joule-Thomson process occurs at constant enthalpy. All we can say is that the final
enthalpy equals the initial enthalpy; the intermediate states of the gas are nonequilibrium states
for which the enthalpy is not defined.

The calculation of the temperature change in the Joule-Thomson effect is similar to our cal-
culation of the Joule effect. Because the process occurs at constant enthalpy, it is useful to write

dH(T, P) = (2—1;)13 dT + (g—g)T dP = 0. (2.216)

24William Thomson was later awarded a peerage and became Lord Kelvin.
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Figure 2.13: Schematic representation of the Joule-Thomson process. The two pistons ensure
constant pressures on each side of the porous plug. The porous plug can be made by packing glass
wool into a tube. The process can be made continuous by using a pump to return the gas from
the region of low pressure to the region of high pressure.

As before, we assume that the number of particles is a constant. From (2.216) we have

(OH/OP)r

=~ GH/oT),

dP. (2.217)

From the relation dH = T'dS + VdP (see (2.159)), we have (0H/OP)r = T(0S/0P)r + V. If
we substitute this relation in (2.217), use the Maxwell relation (2.192), and the definition Cp =
(0H/OT)p, we obtain

(g_]TJ)H = CLP(TOL ~1), (2.218)

where the thermal expansion coefficient « is defined by (2.173). Note that the change in pressure
dP is negative, that is, the gas goes from a region of high pressure to a region of low pressure. To
find the temperature change produced in a finite pressure drop, we integrate (2.218) and find
Py vy
AT =Ty — T :/ Y ra—1)ap. (2.219)
P Cp

For an ideal gas, « = 1/T and AT = 0 as expected.
To understand the nature of the temperature change in a real gas, we calculate « for the van
der Waals equation of state (2.12). We write the latter in the form
P+ap? = —— (2.220)

and take the derivative with respect to T' at constant P:

ap pk dp kT
2 — ) =— — ) —. 2.221
“p(aT)p T—bp (6T)P 1 —bp)? (2.221)
If we express « as
1/0p

-2, =

we can write (2.221) in the form:

kT k
- 2ap] a= (2.223)
(1—bp)? (1-1bp)
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Problem 2.30. Low density limit of the thermal expansion coefficient

For simplicity, consider low densities and show that « in (2.223) is given by

k(1 —bp)

= T 2apl T (2.224a)
~z[t-o(o-57)] (2224)

Use the approximation (1 4+ )" ~ 1 + nx for small z to obtain (2.224b). Then show that in this
approximation
Ta—1=p[(2a/kT) —b). (2.225)

O

We can define an inversion temperature Ti,, at which the derivative (0T /OP)y changes sign.
From (2.219) and (2.225) we see that kT, = 2a/b for a low density gas. For T' > T}, the gas
warms as the pressure falls in the Joule-Thomson expansion; for T" < Ti,., the gas cools as the
pressure falls.

For most gases Ty is well above room temperatures. Although the cooling effect is small, the
effect can be made cumulative by using the cooled expanded gas in a heat exchanger to precool
the incoming gas.

2.24 Supplementary Notes

2.24.1 The mathematics of thermodynamics

Because the notation of thermodynamics is cumbersome, we have tried to simplify it whenever
possible. However, one common simplification can lead to confusion.

Consider the functional relations:
y = f(z) = a2, (2.226)
and
x=g(z) =212 (2.227)

If we write x in terms of z, we can write y as

y=h(z) = f(g(2)) = =. (2.228)

We have given the composite function a different symbol h because this function is different from
both f and g. But we would soon exhaust the letters of the alphabet, and we frequently write
y = f(z) = z, even though f(z) is a different function than f(x).

The notation is even more confusing in thermodynamics. Consider for example, the entropy
S as a function of E, V, and N, which we write as S(E,V, N). However, we frequently consider E
as a function of T' from which we would obtain another functional relation: S(E(T,V,N),V,N).
A mathematician would write the latter function with a different symbol, but physicists usually
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A

pressure

>
volume

Figure 2.14: The change in internal energy can be made arbitrarily small by making the initial (1)
and final (2) states arbitrarily close, but the total work done, which is the area enclosed by the
nearly closed curve, is not vanishingly small. Adapted from Bohren and Albrecht.

do not. In so doing we confuse the name of a function with that of a variable and use the same
name (symbol) for the same physical quantity. This sloppiness can cause problems when we take
partial derivatives. If we write 95/9V, is E or T to be held fixed? One way to avoid confusion is
to write (0S/90V)g or (0S/0V)r, but this notation can become cumbersome.

Another confusing aspect of the mathematics of thermodynamics is the use of differentials.
Some authors, including Bohren and Albrecht,?® have criticized their use. These authors and
others argue for example that the first law should be written as

dE  dQ dW

g7 i v (2.229)
rather than

dE = dQ + dW, (2.230)

An argument for writing the first law in the form (2.229) is that the first law applies to a process,
which must occur over an interval of time. Here, dE/dt represents the rate of energy change,
dW/dt is the rate of doing work and dQ/dt is the rate of heating. In contrast, dE in (2.230) is
the infinitesimal change in internal energy, dWW is the infinitesimal work done on the system, and
d@ is the infinitesimal heat added. However, the meaning of an infinitesimal in this context is
not clear. For example, for the process shown in Figure 2.14, the energy difference Fy — Ej is
arbitrarily small and hence could be represented by a differential dE, but the work and heating
are not infinitesimal. The use of infinitesimals should not cause confusion if you understand that
dy in the context dy/dz = f(x) has a different meaning than in the context dy = f(z) dz.

Example 2.22. Exact and inexact differentials

25See Bohren and Albrecht, pp. 93-99.
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(a) (b)

Figure 2.15: Two among many possible paths between the points (x, y) = (0, 0) and (1,1).

Suppose that a system is descibed by two variables, z and y and f(z,y) = xy (see page 44).2°
Then
df = d(zy) = ydx + xdy. (2.231)
If f(x,y) changes from (0,0) to (1, 1), the change in f is given by
1,1
Af = df = wylgy — (1 x 1) — (0 x 0) = 1. (2.232)
0,0
This result is independent of the path because df is an exact differential.
Now consider dg = ydx. The change in g when (x,y) changes from (0,0) to (1,1) along the
path shown in Figure 2.15(a) is

1,1 1
Ag = / ydx :/ xdr=1/2. (2.233)
0 0

,0

Show that when the integral is along the path shown in Figure 2.15(b), the result is Ag = 0.
Hence the value of Ag depends on the path and dg is an inexact differential. Many textbooks
write inexact differentials as dg. O

Review of partial derivatives. If z is a function of two independent variables = and y, then the
total change in z(z,y) due to changes in 2 and y can be expressed as

0z 0z
az=(52) do+ (55) dy. 2.234
The cross derivatives 9%z /0x Oy and 0%z/dy Ox are equal, that is, the order of the two derivatives
does not matter. We used this property to derive the Maxwell relations in Section 2.22.

The chain rule for differentiation holds in the usual way if the same variables are held constant
in each derivative. For example, we can write

0z 0z ow
(52) = (=) (55) - (2.235)
26 This example is taken from Stephen J. Blundell and Katherine M. Blundell, Thermal Physics, Oxford University
Press (2006), page 105.
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We also can derive a relation whose form is superficially similar to (2.235) when different variables
are held constant in each term. From (2.234) we set dz = 0 and obtain

dz = 0= (%)y dz + (g—Z)m dy. (2.236)
We divide both sides of (2.236) by du:
0z 0z oy
0=(z), * (5). (5 ). (2237)
and rewrite (2.237) as ) ) 5
(52), == (5. (Go). (223

Note that (2.238) involves a relation between the three possible partial derivatives which involve
x, y, and z.

Problem 2.31. Consider the function
2(x,y) = 2%y + 22%y°. (2.239)

Calculate 9z/0x, 0z/0y, 0*2/0x Oy, and 9?2 /dy Ox and show that 92z/0x Oy = 0%2/0ydx. O

2.24.2 Thermodynamic potentials and Legendre transforms

There are many ways of encoding the information in a function. For example Fourier transforms
are useful when a function is periodic. In quantum mechanics it is useful to expand a wave function
in terms of eigenfunctions. In thermodynamics we usually have more control over certain variables
than others. For example, we might prefer to work with the temperature, which is easy to measure
and is formally defined as a derivative, rather than the energy or entropy which are more difficult
to measure.

Consider a function f(x) of one variable. The Legendre transform allows us to replace the
independent variable x by the derivative df /dx without sacrificing any of the information in the
original relation. In the following we will consider functions of only one variable, but the results
can be easily generalized to functions of several variables.

The derivative
_ df(z)

m(z) = f(x) = I (2.240)

is the slope of f(x) at 2. To treat m as the independent variable instead of x, we might be tempted
to solve (2.240) for x in terms of m and then simply write f as a function of m. However, this
procedure would lead to a loss of some of the mathematical content of the orginal function f(x).
That is, given f as a function of m, we would not be able to reconstruct f(z).

As an example®” suppose that f(z) = (1/2)e?*. Hence m = e?* and f(m) = m/2. We now
try to reconstruct f(z) from f(m) to determine if we still have the same information. Because

27This example is adapted from Debashish Chowdhury and Dietrich Stauffer, Principles of Equilibrium Statistical
Mechanics, Wiley-VCH (2000).
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(a)

Figure 2.16: (a) Three of the infinite set of curves with the same values of f’(x) for all . (b) The
curve f(x) and the tangent line at a specific value of z = xy needed to provide enough information
to reproduce f(z).

m = f'(z), we have f(m) = f(m(z)) = f'(x)/2 or f' = 2f. The solution of the latter differential
equation gives f(z) = Ae?*, where A is not specified. So this procedure loses information. The
problem is that knowing only the slope does not tell us the value of the intercept at x = 0.

The goal of the Legendre transformation is to find the function g(m) such that g(m) contains
the same information as the function f(x). In Figure 2.16(a) we show three of the infinite number
of curves with the same slope f/(z). Our goal is to replace the information in the set of points
{z, f(z)} by the equivalent information specified by the set {m, g(m)}. To do so we need to choose
the specific curve f(z) shown in Figure 2.16(b). At each point zp, we can specify a specific curve
by giving the value of the x = 0 intercept of the tangent line at x.

Consider the tangent line that passes through the point (zq, f(z¢)) with slope m and intercept
b at x = 0. Because the general equation for a straight line is y = mx + b, we can write

b=y—mz, (2.241a)

g(m(z0)) = f(x0) = f'(x0)zo. (2.241D)

The slope depends on the particular point zy. The function ¢ for an arbitrary point x is given by
g(m(x)) = f(z) —af'(z) = f(z) — zm. (2.242)

The function g(m) is the Legendre transform of f(z).

Our goal was to write g only in terms of the variable m. We now show that the right-hand
side of (2.242) depends only on m and not on x. From (2.242) we write

dg = df — mdx — xdm. (2.243)
Because df = mdz (see (2.240)), we have

dg = —xdm. (2.244)
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Hence, g depends only on m, just as df = mdx indicates that f depends only on .

To calculate g(m) explicitly we have to eliminate x in (2.242) using m = f’(x). We can solve
the latter for x only if there is a one-to-one relation between x and m, which holds if the function
f'(z) is monotonic or f(x) is always concave up or always concave down.

Example 2.23. Reconstructing f(z)

We again consider f(z) = £e** for which m(x) = ¢**. Then

1
g=f(x)—am= 5621 — ze?”. (2.245)

We next invert the relation m = ¢2® to solve for z in terms of m: z = %ln m. Hence the Legendre
transform of f(x) is

g(m) = %m(l “lnm). (2.246)
O

Now suppose that g(m) is given. Can we construct f(x)? From (2.244) we have x = —dg/dm.
From (2.246) we have z = % Inm, and hence m = €* for our example. Hence

1
f=glm)+azm= §m(1 —Inm) 4+ am (2.247a)
and
1 1
f(z) = 5621(1 —2x) + xe*® = 5629”, (2.247b)

which is the original function.

Problem 2.32. Simple Legendre transforms

(a) Calculate the Legendre transform of f(z) = x3.

(b) Calculate the Legendre transforms of the functions f(x) = z and f(z) = sinz if they exist. O

Problem 2.33. The Helmholtz free energy as a Legendre transform

Start from the function E(S,V, N) and use the Legendre transform to find the function F(T,V, N).
O

Vocabulary

thermodynamics, system, boundary, surroundings, macrostate
insulator, conductor, adiabatic wall, thermal contact
volume V', pressure P, number of particles NV, chemical potential u

thermometer, thermodynamic temperature T (K), Celsius temperature scale (°C), ideal gas
temperature scale
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W, work done on a system

@, energy transferred due to a temperature difference only
state function, internal energy E, entropy S

three laws of thermodynamics

intensive and extensive variables

heat capacity C, specific heat ¢

quasistatic, reversible, irreversible, isothermal, constant volume, adiabatic, quasistatic, and
cyclic processes

heat bath, heat source, heat sink, reservoir

Carnot engine, Carnot efficiency, refrigerator, heat pump, efficiency, coefficient of perfor-
mance

thermal equilibrium, mechanical equilibrium, chemical equilibrium, thermodynamic equilib-
rium

thermodynamic potential, Helmholtz free energy F', Gibbs free energy GG, enthalpy H, Landau
potential

ideal gas equation of state, van der Waals equation of state

Boltzmann’s constant k, universal gas constant R

Additional Problems

Problem 2.34. Mechanical and thermodynamic equilibrium

Compare the notion of equilibrium in mechanics and thermodynamics. O

Problem 2.35. Meaning of phenomenological

In the text the word phenomenological was used to describe a description of phenomena that is
not derived from first principles. In what sense is all of physics phenomenological? |

Problem 2.36. Barometer

Explain how a barometer works to measure pressure. |

Problem 2.37. Is a diamond forever?

Diamond is a metastable form of carbon, which means that it is not in the state with the lowest
free energy. That is, diamond is in a local rather than in the global minimum of the free energy.
Obviously, the diamond state can stay for a very long time. Is it possible to apply the laws of
thermodynamics to diamond? What is the stable form of carbon? |

Problem 2.38. A question of degree

Although you probably learned how to convert between Fahrenheit and Celsius temperatures, you
might not remember the details. The fact that 1°C equals %OF is not too difficult to remember,
but where does the factor of 32 go? An alternative procedure is to add 40 to the temperature in
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°C or °F and multiply by g if going from °F to °C or by % if going from °C to °F. Then subtract
40 from the calculated temperature to obtain the desired conversion. Explain why this procedure
works. O

Problem 2.39. Historical development of thermodynamics

Discuss the development of our understanding of thermodynamics and the contributions of people
such as Count Rumford (Benjamin Thompson), James Joule, Julius Robert von Mayer, Sadi
Carnot, William Thomson (Lord Kelvin), Rudolf Clausius, Anders Celsius, and Gabriel Fahrenheit.
Choose two people to discuss and use at least two different sources. O

Problem 2.40. Naming rights

Discuss the meaning of the statement that one of the most important contributions of 19th century
thermodynamics was the development of the understanding that heat (and work) are names of
processes not names of things. O

Problem 2.41. Hot and cold

It is common in everyday language to refer to temperatures as “hot” and “cold.” Why is this use
of language misleading? Does it make sense to say that one body is “twice as hot” as another?
Does it matter whether the Celsius or Kelvin temperature scale is used? O

Problem 2.42. Does it make sense to talk about the amount of heat in a room? O

Problem 2.43. Heat as a fluid

(a) In what context can energy transferred by heating be treated as a fluid? Give some examples
where this concept of “heat” is used in everyday life. In what context does the concept of
“heat” as a fluid break down? Is it possible to isolate “heat” in a bottle or pour it from one
object to another?

(b) *Write a short essay based on at least two sources on the history of the “caloric.” O
Problem 2.44. Why should we check the pressure in a tire when the tire is cold? O

Problem 2.45. Why do we use the triple point of water to calibrate thermometers? Why not use
the melting point or the boiling point? O

Problem 2.46. Money in the bank

In the text we discussed the analogy of the internal energy to the amount of water in a pond.
The following analogy due to Dugdale might also be helpful.2® Suppose that a student has a bank
account with a certain amount of money. The student can add to this amount by either depositing
or withdrawing cash and by writing or depositing checks from the accounts of others. Does the
total amount of money in the student’s account distinguish between cash and check transfers?
Discuss the analogies to internal energy, work, and heating. O

28See Dugdale, pp. 21-22.
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Problem 2.47. Common misconceptions
The following excerpt is taken from a text used by one of the author’s children when he was in
the sixth grade. The title and the author of the text will remain anonymous. Find the conceptual
errors in the text.
A. What is heat?

You have learned that all matter is made up of atoms. Most of these atoms combine to form molecules.

These molecules are always moving—they have kinetic energy. Heat is the energy of motion (kinetic energy)
of the particles that make up any piece of matter.

The amount of heat a material has depends on how many molecules it has and how fast the molecules
are moving. The greater the number of molecules and the faster they move, the greater the number of
collisions between them. These collisions produce a large amount of heat.

How is heat measured? Scientists measure heat by using a unit called a calorie. A calorie is the
amount of heat needed to raise the temperature of 1 gram of 1 water 1 degree centigrade (Celsius).

A gram is a unit used for measuring mass. There are about 454 grams in 1 pound.

Scientists use a small calorie and a large Calorie. The unit used to measure the amount of heat needed
to raise the temperature of 1 gram of water 1 degree centigrade is the small calorie. The large calorie is
used to measure units of heat in food. For example, a glass of milk when burned in your body produces
about 125 Calories.

Questions:
1. What is heat?
2. What two things does the amount of heat a substance has depend on?
3. What is a calorie?

4. Explain the following: small calorie; large calorie.

B. What is temperature?

The amount of hotness in an object is called its temperature. A thermometer is used to measure
temperature in units called degrees. Most thermometers contain a liquid.

C. Ezxpansion and Contraction

Most solids, liquids and gases expand when heated and contract when cooled. When matter is heated,
its molecules move faster. As they move, they collide with their neighbors very rapidly. The collisions
force the molecules to spread farther apart. The farther apart they spread, the more the matter expands.

Air, which is a mixture of gases, expands and becomes lighter when its temperature rises. Warm air
rises because the cold, heavier air sinks and pushes up the lighter warm air.

What happens when solids or gases are cooled?” The molecules slow down and collide less. The
molecules move closer together, causing the material to contract. O

Problem 2.48. Why are the terms heat capacity and specific heat poor choices of names? Suggest
more appropriate names. Comment on the statement: “The heat capacity of a body is a measure
of how much heat the body can hold.” O

Problem 2.49. The atmosphere of Mars has a pressure that is only 0.007 times that of Earth
and an average temperature of 218 K. What is the volume of 1 mole of the Martian atmosphere?
Compare your result with the volume of one mole on Earth. O
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Problem 2.50. Gasoline burns in an automobile engine and releases energy at the rate of 160 kW.
Energy is lost through the car’s radiator at the rate of 51 kW and out the exhaust at 50kW. An
additional 23kW goes to frictional heating within the car. What fraction of the fuel energy is
available for moving the car? O

Problem 2.51. Two moles of an ideal gas at 300K in a volume of 0.10m? are compressed isother-
mally by a motor driven piston to a volume of 0.010m?. If this process takes places in 120s, how
powerful a motor is needed? O

Problem 2.52. Give an example of a process in which a system is not heated, but its temperature
increases. Also give an example of a process in which a system is heated, but its temperature is
unchanged. O

Problem 2.53. Expansion of a gas into vacuum

(a) Suppose that a gas expands adiabatically into a vacuum. What is the work done by the gas?

(b) Suppose that the total energy of the gas is given by (see (2.24))

3 N
—NET — N— 2.248
. 70 (2.248)
where a is a positive constant. Initially the gas occupies a volume Vi at a temperature 7;. The
gas then expands adiabatically into a vacuum so that it occupies a total volume Vo. What is
the final temperature of the gas? O

E =

Problem 2.54. Black hole thermodynamics

A Dblack hole is created from the collapse of a massive object into one so dense that beyond a
certain radius, nothing can escape including light. The measurable properties of a black hole
depend only on its mass, charge, and angular momentum. In this problem we estimate the entropy
and temperature of a charge neutral non-rotating black hole.

(a) Because the properties of the black hole depend only on its mass, use dimensional analysis to
estimate the radius R of a black hole in terms of its mass M, the gravitational constant G,
and the speed of light ¢. (If you think quantum mechanics is relevant, try including Planck’s
constant h, but there is no way to obtain a quantity that is a function of M, G, ¢, and h that
has dimensions of length.)

(b) Assume that the entropy is of order Nk, where N is the number of particles in the black hole.
The maximum entropy occurs when the particles are photons of wavelength A of the order of
the diameter of the black hole. Take A\ = 2R and determine the entropy S as a function of
M (the total energy is Mc? and the energy of a photon is hc/A). More detailed theoretical
arguments give the correct relation

8T2GM?
he

Your approximate result should have the correct dependence on GG, M, h, ¢, and k. Calculate
a numerical value for the entropy for a one solar mass black hole using (2.249). (The solar
mass Mg ~ 2 x 103 kg.)

S =k (2.249)
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(c) Express the entropy in terms of the surface area A of the black hole instead of M. Note that
the area is a direct measure of the entropy. Does the entropy increase or decrease when two
black holes coalesce into one?

(d) Express S in terms of the total energy E instead of M and determine the temperature for
a one solar mass black hole. Use the approximation for R obtained in part (a) to find the
temperature in terms of the gravitational field g at the radius R. O

Problem 2.55. Entropy as a state function

(a) Suppose that one mole of an ideal gas expands in a quasistatic adiabatic process from P; = 1 Pa
and V; = 1m? to Vo = 8m®. What is the change in the pressure and the entropy of the gas?

(b) What are the initial and final temperatures of the gas?

(c¢) Consider a process at constant volume that brings the system to the temperature To which
you found in part (b). What is the change in entropy of this process?

(d) Next increase the volume at constant temperature Th. What is the change in the entropy in
this isothermal process?

(e) Compare the total change in the entropy to the result that you found in part (a). Does the
change of the entropy depend on the path between two equilibrium states? O

Problem 2.56. Consider the various processes shown in Figure 2.17 and calculate W, the total
work done on the system and @, the total energy absorbed by heating the system. Assume that
the system is an ideal gas. (This problem is adapted from Reif, p. 215.)

(a) The volume is changed quasistatically along the curved path 1 — 3 while the gas is kept
thermally isolated.

(b) The system is compressed from its original volume of V; = 8 m? to its final volume V3 = 1 m?
along the path 1 — 2 and 2 — 3. The pressure is kept constant at P; = 1 Pa and the system
is cooled to maintain constant pressure. The volume is then kept constant and the system is
heated to increase the pressure to P, = 32 Pa.

(c¢) The pressure is changed at constant volume from 1 — 4 and then at constant pressure from
4 — 3. The two steps of the preceding process are performed in opposite order.

(d) Diagonal path from 1 — 3. The volume is decreased and the system is heated so that the
pressure is proportional to the volume. O

Problem 2.57. More work

Consider a system described by the van der Waals equation of state which expands at constant
temperature from volume V; to volume V5. Assume that the density p = N/V < 1 over the range
of volumes of interest.

(a) Calculate the work W4y done on the gas to the lowest relevant order in p.
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Figure 2.17: Illustration of various thermodynamic processes discussed in Problem 2.56. The units
of the pressure P and the volume V are Pa and m?, respectively.

(b) Calculate the work Wigea done on the gas under the same conditions assuming that the gas is
ideal.

(c) Find the difference Wyqw — Widear and discuss the reason why this difference is positive or
negative as a function of the temperature. O

Problem 2.58. A 0.5kg copper block at 80°C is dropped into 1kg of water at 10°C. What is the
final temperature? What is the change in entropy of the system? The specific heat of copper is
386J/(kgK). O

Problem 2.59. Carnot efficiencies

(a) Surface temperatures in the tropical oceans are approximately 25°C, while hundreds of meters
below the surface the temperature is approximately 5°C. What would be the efficiency of a
Carnot engine operating between these temperatures?

(b) What is the efficiency of a Carnot engine operating between the normal freezing and boiling
points of water? O

Problem 2.60. A small sample of material is taken through a Carnot cycle between a heat source
of boiling helium at 1.76 K and a heat sink at an unknown lower temperature. During the process,
7.5mJ of energy is absorbed by heating from the helium and 0.55mJ is rejected at the lower
temperature. What is the lower temperature? O

Problem 2.61. Positive change of the total entropy
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(a) In Example 2.16 it was shown that the total entropy change when body A is placed in thermal
contact with a heat bath at temperature Ts can be written as

AS = CAf(%), (2.250)

where C'4 is temperature-independent and T4 is the initial temperature of body A. The func-
tion f(z) is given by

flx)=lnz+ é -1, (2.251)

where @ = Tp/Tx. Calculate f(z = 1) and df /dz and show that the total entropy increases
when body A is placed in thermal contact with a heat bath at a higher temperature (z > 1).

(b) If the total entropy increases in a heating process, does the total entropy decrease in a cooling
process? Use similar considerations to show that the total entropy increases in both cases.

(c) Plot f(x) as a function of z and confirm that its minimum value is at * = 1 and that f > 0
forz <1and z > 1. O

Problem 2.62. Changes in the entropy

Calculate the changes in entropy due to various methods of heating:

(a) One kilogram of water at 0°C is brought into contact with a heat bath at 90°C. What is the
change in entropy of the water? What is the change in entropy of the bath? What is the
change in entropy of the entire system consisting of both water and heat bath? (The specific
heat of water is approximately 4184 J/kgK.)

(b) The water is heated from 0°C to 90°C by first bringing it into contact with a heat bath at
45°C and then with a heat bath at 90°C. What is the change in entropy of the entire system?

(c) Discuss how the water can be heated from 0°C to 90°C without any change in entropy of the
entire system. O

Problem 2.63. The Otto cycle

The Otto cycle is an idealized prototype of most present-day internal combustion engines. The
idealization assumes that the working substance is air rather than a mixture of gases and vapor
whose composition changes during the cycle. For simplicity, we assume that Cy and Cp are
constant and that v = Cp/Cy = 1.4, the value for air. The more important approximation is that
the processes are assumed to be quasistatic. An idealized cycle that represents the six parts of this
cycle is known as the air standard Otto cycle and is illustrated in Figure 2.18.

5 — 1. Intake stroke. The mixture of gasoline and air is drawn into the tube through the
intake valve by the movement of the piston. Idealization: A quasistatic isobaric intake of air
at pressure Py to a volume V.

1 — 2. Compression stroke. The intake valve closes and air-fuel mixture is rapidly com-
pressed in the tube. The compression is nearly adiabatic and the temperature rises. Ideal-
ization: A quasistatic adiabatic compression from V; to V5; the temperature rises from 77 to
Ts.
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2 — 3. Explosion. The mixture explodes such that the volume remains unchanged and a very
high temperature and pressure is reached. Idealization: A quasistatic and constant volume
increase of temperature and pressure due to the absorption of energy from a series of heat
baths between Ty and T5.

3 — 4. Power stroke. The hot combustion products expand and do work on the piston.
The pressure and temperature decrease considerably. Idealization: A quasistatic adiabatic
expansion produces a decrease in temperature.

4 — 1. Valve ezhaust. At the end of the power stroke the exhaust valve opens and the com-
bustion products are exhausted to the atmosphere. There is a sudden decrease in pressure.
Idealization: A quasistatic constant volume decrease in temperature to 77 and pressure Py
due to an exchange of energy with a series of heat baths between T, and T;.

1 — 5. Ezxhaust stroke. The piston forces the remaining gases into the atmosphere. The
exhaust valve then closes and the intake valve opens for the next intake stroke. Idealization:
A quasistatic isobaric expulsion of the air.

Show that the efficiency of the Otto cycle is

Vo1
-1-(17) 2.252
U v (2.252)
A compression ratio of about ten can be used without causing knocking. Estimate the theoretical
maximum efficiency. In a real engine, the efficiency is about half of this value. O
P 4
3
A
Q—1—
2
4
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V.0
2
5 - -l
Py > - 1
Vs Vi \%

Figure 2.18: The air standard Otto cycle.
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Problem 2.64. If S is expressed as a function of T, V or T, P, then it is no longer a thermody-
namic potential. That is, the maximum thermodynamic information is contained in .S as a function
of E and V (for fixed N). Why? O

Problem 2.65. The enthalpy as a free energy

Show that the enthalpy H = E 4+ PV is the appropriate free energy for the case where the entropy
and number of particles is fixed, but the volume can change. In this case we consider a system
connected to a larger body such that the pressure of the system equals that of the large body with
the constraint that the larger body and the system do not exchange energy. O

Problem 2.66. The Landau potential

Find the Landau potential for the case where the temperature is fixed by a heat bath, the volume
is fixed, and particles can move between the systems and the heat bath. You will need to extend
the definition of the availability to allow for the number of particles to vary within the system. Use
the same argument about extensive variables to show that the Landau potential equals —PV. O

Problem 2.67. Joule-Thomson inversion temperature

The inversion temperature for the Joule-Thomson effect is determined by the relation (90T /0V)p =
T/V (see (2.218))). In Section 2.23.2 we showed that for low densities and high temperatures (low
pressures) the inversion temperature is given by kTi, = 2a/b.

(a) Show that at high pressures, T,y is given by

2a 2
A _ 22
kTmV 9% [2 + 1 3b P/a] . (2.253)

(b) Show that as P — 0, kTiny = 2a/b.

(c) For P < a/3b% there are two inversion points between which the derivative (0T /OP)y is
positive. Outside this temperature interval the derivative is negative. For P > a/3b? there are
no inversion points and (97 /0P)y < 0 is negative everywhere. Find the pressure dependence
of the inversion temperature for the Joule-Thomson effect. O

Problem 2.68. More thermodynamic identities

(a) Derive the identities

(5, (5, e

(%%)T - T(%)V' (2.254D)

and
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(b) Show that

KR Cp
— = 2.255
RS OV, ( )

where the isothermal compressibility is given by (2.172) and the adiabatic compressibility xg
is defined as

10V
ks = _V(ﬁ)s' (2.256)
Use (2.256) and (2.205) to obtain the relation
T
Ky — Ky = IV 2. (2.257)
Cp
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