
Chapter 5

Nucleation Near Coexistence

c©2012 by W. Klein, Harvey Gould, and Jan Tobochnik
30 October 2012

5.1 Introduction

In this chapter we will continue our discussion of nucleation for h ≈ 0, that is, near the
coexistence curve. We will also begin a study of nucleation near the spinodal. The latter
topic will require a substantial digression into percolation theory.

5.2 Classical nucleation continued

The variation that led to Eq. (4.35) was incomplete because to obtain an equation that
we could solve without resorting to a computer we were forced to set h = 0 in Eq. (4.30).
However, we can obtain information about the nucleation rate and the droplet size if we
are willing to accept some plausible hand waving. To obtain this information we again
follow Langer [1987].

First we note that by an integration by parts
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∫
[∇φ(r)]2d~r = −1

2

∫
φ(r)∇2φ(r)d~r. (5.1)

If we use Eqs. (5.1) and (4.9), we have
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2

∫
φ(r)∇2φ(r)d~r =

∫
φ(r)

[
− εφ(r)− 2φ

3
(r) +

h

2

]
d~r, (5.2)
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where φ(r) refers to the solution of Eq. (4.9) for an arbitrary value of h, not just to the
solution for h = 0 in Eq. (4.35).

For φ(r) = φ(r) the Hamiltonian H(φ) becomes H(φ). We use Eq. (4.3) to obtain

− βH(φ) = −βRd
∫ [

φ
4
(r) +

h

2
φ(r)

]
d~r. (5.3)

Remember that the solution to Eq. (4.9) is the metastable state plus the isolated droplet.
As we have seen, there is a solution to Eq. (4.9) which is just the metastable state, that
is, φ′0+. Because φ′0+ is a solution to Eq. (4.9), the energy associated with this spatially
uniform saddle point can also be written in the form of Eq. (5.3). The energy associated
only with the droplet, the energy cost of the droplet ∆H, is

− β∆H = −βRd
∫ [

(φ
4
(r)− φ′40+) +

h

2
(φ(r)− φ′0+)

]
d~r. (5.4)

We now use the idea that the interior of the critical droplet can be treated separately
from its surface and resembles the stable phase. This idea was assumed in Chapter 1 and
made plausible in Chap 4 in the discussion following Eq. (4.35). If this assumption is
valid, then the bulk contribution to the energy cost per unit volume of the critical droplet
∆EB is

−∆EB = (φ40− − φ′40+) +
h

2
(φ0− − φ′0+), (5.5)

where φ0− is the stable phase saddle point.

To obtain φ0− and φ′0+, we start with h = 0 so that φ0− = −
√
ε/2 and φ′0+ =

√
ε/2.

We now assume that the change in these saddle point values generated by a small field in
the negative h direction is also small. If we substitute φ = ±

√
|ε|/2 + δ in Eq. (4.10) with

ε < 0, we obtain

2ε
[
±
√
|ε|
2

+ δ
]

+ 4
[
±
√
|ε|
2

+ δ
]3 − h = 0, (5.6)

where δ is assumed to be small.

We linearize Eq. (5.6) with respect to δ and obtain

δ =
h

4|ε|
. (5.7)

Therefore for small h

φ0− = −
√
|ε|
2

+
h

4|ε|
and φ′0+ =

√
|ε|
2

+
h

4|ε|
. (5.8)
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From Eqs. (5.5) and (5.8) we find to first order in h

∆EB = 2h

√
|ε|
2
. (5.9)

This result is the energy change per unit volume due to the bulk or interior of the droplet.
Note that this term is proportional to the magnetic field h as was assumed in the simple
theory in Chapter 1, and we have temporarily ignored the Rd term in Eq. (5.4).

Next we consider the surface or droplet interface term. To calculate the surface energy
cost per unit area, we again view the problem as a particle moving on a potential surface.
In particular, the surface contribution comes from the motion from the larger to the
smaller peak. In the limit h → 0, we can ignore the friction term Eq. (4.32). Moreover,
we should expect no magnetic field h-dependence, because h controls only how long the
particle stays close to the higher peak. With these considerations we obtain the energy
cost per unit area from the surface ∆ES by substituting the solution for φ(r) for h = 0
given in Eq. (4.35) into Eq. (5.4), neglecting the term proportional to h, and integrating
only over the radial coordinate.

∆ES ≈
∫ ∞
−∞

|ε|2

4

[
1− tanh4

√
2|ε|1/2(r − r0)

]
dr =

√
2|ε|3/2

3
. (5.10)

If we substitute ∆ES and ∆EB into Eq. (5.4), perform the required integrals (we have
already done the radial part of the integral over ∆ES), and remember that h is negative,
we obtain

− β∆H ≈ −βRd
[
− 2|h|

√
|ε|
2

4

3
πr30 +

√
2|ε|3/2

3
4πr20

]
. (5.11)

To obtain the critical droplet, we need to complete the variational procedure that we
did not complete before because we could not solve Eq. (4.30) for h 6= 0. From Eq. (5.11)
it is clear that we will again obtain results for the critical droplet radius and for the free
energy cost of the critical droplet which are essentially the same as obtained in Chapters 1
and 3.

It is useful to comment a bit more on the integral in Eq. (5.10). It is clear why we did
not perform the integral over the angles at this time, but why did we not use the r2 part
of the volume differential, d~r = r2 sin(θ)drdθdφ? The answer lies again in the separation
of the surface and bulk terms in the limit h → 0. The parameter r0, which locates the
center of the droplet surface, is assumed to be large if the droplet center is placed at the
origin. The magnitude of r0 will be seen to be of order h−1 in the following. We can write
r = r0[1 + (r − r0)/r0]. The term 1 − tanh4[

√
2|ε|1/2(r − r0)] restricts r − r0 to be small

compared to h−1 so we can ignore the (r − r0)/r0 term and set r2 = r20 in the volume
differential.



CHAPTER 5. NUCLEATION NEAR COEXISTENCE 60

5.3 Nucleation rate

We now consider the nucleation rate. As we saw with the droplet model in Chapter 3,
the nucleation rate is associated with the jump across the branch cut obtained from the
analytic continuation to negative values of the magnetic field. In the droplet model this
analytic continuation was performed explicitly. The Landau-Ginsburg-Wilson (LGW)
model is not as simple to analyze.

One difference between the two models is that the stable state for h > 0 and the
metastable state for h < 0 are not specified for the droplet model. We know only that
they correspond to the droplet parameter ` = 0. In the LGW model the metastable and
stable states are specified. Moreover, the LGW model is rich enough so that these states
can be determined as functions of h and ε.

The other difference, which is more mathematically complicated, is that in the droplet
model the integral over fluctuations is reduced to a simple integral in one direction in the
space of fluctuations. All fluctuations are assumed to be simple spherical compact droplets
which can be varied only by changing their radius. In the LGW model this simplification
is not present, and the integral is to be performed in an infinite dimensional function
space. Consequently, it is not possible to carry out the program of analytic continuation
explicitly in the LGW model.

However, we can make certain physically based arguments using the classical droplet
model as a paradigm. In the classical droplet model there are two saddle points for d ≥ 2.
The one on which we concentrated corresponded to the critical droplet, that is, Eq. (3.33).
However, there is also a saddle point at ` = 0. This saddle point corresponds to the
metastable state for α = −1 in Eq. (3.31). As we discussed, there is no saddle point in
this simple model that corresponds to the stable state for h < 0. Note that it is the saddle
point associated with the droplet that we integrate over in the droplet model to obtain
the imaginary part of the free energy and hence the nucleation rate.

By using the droplet model as a paradigm we will use the saddle point associated
with the droplet in the LGW model to obtain the nucleation rate. That is, we want
the part of the solution of Eq. (4.9) corresponding to the critical droplet. Remember
that the complete solution of Eq. (4.9) also contains the metastable state. If we could
obtain this solution directly for arbitrary h, we would simply substitute it into the LGW
Hamiltonian to obtain the exponential factor of the nucleation rate. We could then expand
in a functional Taylor series about the critical droplet saddle point and do the Gaussian
integral to obtain the prefactor [see Eq. (3.34)].

As we discussed we cannot solve Eq. (4.9) for arbitrary values of h. However, we have
obtained the energy cost of the droplet using a plausible argument due to Langer. To
obtain the exponential part of the nucleation rate we return to Eq. (5.11). We differentiate
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with respect to rc and set the derivative equal to zero, and obtain

rc =
2

3

|ε|
|h|
. (5.12)

If we substitute this value for rc into Eq. (5.11), we obtain

− β∆H = −βRd
√

2
(8

9

)2 π
27

|ε|7/2

|h|2
. (5.13)

From Eq. (4.4) and our analogy with the droplet model we obtain the nucleation rate J

J = λs exp
[
− βRd

√
2
(8

9

)2 π
27

|ε|7/2

|h|2
]
. (5.14)

The exponential part of the nucleation rate is consistent with that obtained from the
Becker-Döring theory. The prefactor λs is very difficult to obtain. We will return to the
prefactor in the context of nucleation near the spinodal where the same techniques are
used as in the classical case, but the calculation is a bit more transparent, although still
quite involved. We turn to the spinodal case next.

5.4 Nucleation near the spinodal

We begin by returning to Eq. (4.10) which we repeat here for convenience.

− 2|ε|φ+ 4φ3 − h = 0, (5.15)

and we have assumed a negative value for ε. The solutions to Eq. (5.15) are either the
metastable or stable minima or an unstable maximum. Suppose we differentiate the left-
hand side of Eq. (5.15) and set this second derivative of the Landau-Ginsburg free energy
equal to zero to obtain the value of φ at the spinodal. We obtain

− 2|ε|+ 12φ2 = 0. (5.16)

The solution to Eq. (5.16) locates the inflection points in the Landau-Ginsburg free energy.
It is the point where the free energy ceases to be convex (see Fig. 5.1).

If we fix |ε| and require that both Eqs. (5.15) and (5.16) be satisfied simultaneously we
locate the point at which the metastable minimum vanishes. At this point the metastable
minimum, the maximum, and the inflection point coalesce. We designate the value of the
order parameter at this point as φs and the value of the magnetic field as hs. Both of
these quantities depend on the temperature.
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Figure 5.1: Landau-Ginsburg free energy for (a) h = 0, (b) 0 < h < hs and (c) h = hs.

We now define a new field
ψ̃(~r) ≡ φ(~r)− φs. (5.17)

We can rewrite the LGW Hamiltonian by substituting φ(~r) = ψ̃(~r) + φs obtained from
Eq. (5.17) into Eq. (4.2) to obtain

− βH(ψ̃) = −βH(φs)− βRd
∫ [1

2
[∇ψ̃(~r)]2 + ∆hψ̃(~r)−

√
6|ε|ψ̃3(~r) + ψ̃4(~r)

]
d~r, (5.18)

where ∆h = hs − h, and H(φs) is the LGW Hamiltonian at φ(~r) = φs. We will ignore φs
because it will produce only an overall constant.

Because we will stay away from the critical point, |ε| 6= 0. However, as we approach
the spinodal, ∆h will vanishes. We might also expect that ψ̃(~r) will also be small near the
spinodal. The reason is that the spinodal is a critical point as discussed in Chapter 3. At
the spinodal we expect that any fluctuations, including critical droplets, are not compact
objects with large differences in the order parameter between the droplet interior and the
metastable state background, but are diffuse objects. We will see that this assumption
is correct. We make this assumption for now and neglect the ψ̃4(~r) term in Eq. (5.18)
because it is small compared to the ψ̃3(~r) term [Cahn and Hilliard 1958, Cahn and Hilliard
1959, Klein and Unger 1983, Unger and Klein 1984].
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We will make one more alteration to Eq. (5.18). We have expanded Eq. (4.3) about
the spinodal by setting φ(~r) = ψ̃(~r) + φs. Note that the first functional derivative of
−βH(ψ̃) does not vanish unless ∆h = 0, but the second derivative vanishes for all values
of ∆h at ψ̃(~r) = 0, that is, at φ(~r) = φs. For several reasons it will be more convenient to
expand instead about the metastable minimum. To do so we define a new field

ψ(~r) ≡ ψ̃(~r) + a, (5.19)

where a is a constant to be determined. We then insert ψ̃(~r) = ψ(~r)− a and determine a
so that the coefficient of ψ(~r) vanishes. We obtain

−βH(ψ) = −βH(φs)− LdβRd
1

3

√
3|∆h|3/2|ε|1/4

− βRd
∫ [1

2
[∇ψ(~r)]2 + 2

√
3|ε|1/4(∆h)1/2ψ2(~r)− 6|ε|1/2ψ3(~r)

]
d~r. (5.20)

The first functional derivative vanishes at ψ(~r) = 0, but the second derivative vanishes
only when ∆h = 0 as well. The value of a is such that the order parameter ψ(~r) =
φ(~r) − φm, where φm is the value of the order parameter obtained from Eq. (5.15) at
the metastable minimum. The first two terms on the right-hand side of Eq. (5.20) are
independent of ψ(~r) and can be ignored for the present.

Before proceeding to investigate the nucleation process near the spinodal we need
to investigate the thermodynamics of the metastable state near the spinodal. We begin
by finding the expression for the equilibrium order parameter when we fix the value of
ψ(~r) = L−d at r = 0. This is simply the pair correlation function, which is the probability
that there is a particle at ~r given that there is a particle at another fixed site that we have
chosen to be ~r = 0. In the βRd � 1 limit this correlation function can be found by finding
the extrema of the LGW Hamiltonian using a Lagrange multiplier with the condition that
ψ(~r = 0) = L−d. Specifically we need the functional derivative of∫ [1

2
[∇ψ(~r)]2 + 2

√
3|ε|1/4(∆h)1/2ψ

2
(~r)− 6|ε|1/2ψ3

(~r)− λ(δ(~r)ψ(~r)− L−d)
]
d~r, (5.21)

which results in the Euler-Lagrange equation

−∇2ψ(~r) + 4
√

3|ε|1/4(∆h)1/2ψ(~r)− 18|ε|1/2ψ2
(~r) = λδ(~r). (5.22)

We expect the correlation function ψ(~r) to be of the form [Ma 1976]

ψ(~r) =
exp−r/ξ
rd−2+η

, (5.23)

where ξ is the correlation length.
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For large r, ψ(~r) is small. Consequently we can neglect the ψ
2
(~r) term in Eq. (5.22).

We then want to solve

−∇2ψ(~r) + 4
√

3|ε|1/4(∆h)1/2ψ(~r) = λδ(~r). (5.24)

We take the Fourier transform and obtain

ψ̂(~k) =
λ

k2 + 4
√

3|ε|1/4(∆h)1/2
. (5.25)

The Fourier transform of the correlation function is the structure factor ψ̂(k), where
the structure factor is a function of the magnitude |~k| only. The critical exponent η is
obtained [Ma 1976] by setting ∆h = 0 and asking how the structure factor diverges as
k → 0. The divergence we expect is

ψ̂(k) ≈ k−(2−η). (5.26)

From Eqs. (5.25) and (5.26) we conclude that η = 0.

To obtain the susceptibility exponent γ defined by

χT ≈ (∆h)−γ , (5.27)

where χT is the isothermal susceptibility, we set k = 0 and ask how the susceptibility
diverges as ∆h→ 0. From Eqs. (5.25) and(5.27) we obtain γ = 1/2.

We obtain the correlation length exponent,

ξ ≈ (∆h)−ν , (5.28)

by taking the inverse Fourier transform of ψ̂(k) in Eq. (5.25). In d = 3

ψ(r) =
π

r

∫ ∞
−∞

k sin(kr)

k2 + 4
√

3|ε|1/4(∆h)1/2
. (5.29)

The integral is done as a contour integral by breaking up sin(kr) into two exponentials
and closing the countour in the upper half complex k plane for the eikr term and in the
lower half plane for the e−ikr term. We let ω2 = 4

√
3|ε|1/4 and obtain

ψ(r) = π2
exp[−ω(∆h)1/4r]

r
. (5.30)

From Eq. (5.30) we immediately obtain ν = 1/4. We also obtain η = 0 by comparison with
Eq. (5.23), consistent with our earlier result. To obtain the precise asymptotic form for the
correlation length remember that r = x/R. Therefore in unscaled units ξ ≈ R(∆h)−1/4.
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We need two more critical exponents. We want to obtain the exponent β (not to be
confused with (kBT )−1), which specifies the way φm − φs → 0 as ∆h → 0. We defined
ψ̃(~r) in Eq. (5.17) as the difference between the order parameter and the spinodal value
φs. To obtain β we restrict ψ̃(~r) to be a spatial constant ψ̃ and define β through

ψ̃ ≈ (∆h)β. (5.31)

To obtain β we return to Eq. (5.18), assume ψ̃(~r) = ψ̃, differentiate −βH(ψ̃) with respect
to ψ̃, and obtain

ψ̃ ≈ (∆h)1/2, (5.32)

where we neglected the term in ψ̃4. Therefore β = 1/2.

The last critical exponent we wish to determine is the one that specifies the free energy
cost of a critical fluctuation the size of the correlation length. We can find this exponent
by substituting Eq. (5.32) into Eq. (5.18). The partition function is

z =

∫
δψ̃ exp[−βH(ψ̃)]. (5.33)

In the limit βRd � 1 we can do the integral using steepest descent and obtain the free
energy per unit volume f as

f(|ε|, |∆h|) ≈ (∆h)3/2. (5.34)

The exponent corresponding to this quantity is 2 − α. The free energy cost ∆F of a
fluctuation of linear dimension ξ is

∆F = f(|ε|, |∆h|)ξd ≈ Rd(∆h)
3
2
− d

4 , (5.35)

In summary, we have obtained the critical exponents at the spinodal as

η = 0, γ = 1/2, β = 1/2, ν = 1/2, and 2− α = 3/2. (5.36)

These exponents satisfy all of the scaling laws. For example, we should have

2β + γ = 2− α, (5.37)

which is satisfied by the exponents in Eq. (5.36). We will return to the subject of scaling
shortly.

What do these considerations have to do with nucleation near the spinodal? Let’s
return to Eqs. (5.20) and (5.33) and apply the same methods that we used in the classical
case. The metastable order parameter, with the critical droplet, is the solution of the
differential equation

−∇2ψ(~r) + 4
√

3|ε|1/4(∆h)1/2ψ(~r)− 18|ε|1/2ψ2(~r) = 0. (5.38)
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As with the classical case this equation is difficult to solve. However, here we can take
advantage of scaling. If we assume that the function ψ(~r) is of the form

ψ(~r) = (|∆h)1/2ψ′(~r(∆h)1/4) (5.39)

we obtain an equation for ψ′ independent of ∆h. Equation (5.39) implies that the critical
droplet has an amplitude proportional to (∆h)1/2. That is, the density at the center of
the droplet goes to zero in the same way the order parameter goes to zero [see Eq. (5.32)].
Again using the unscaled length variable we see that Eq. (5.39) also implies that the linear
dimension of the droplet is proportional to R(∆h)−1/4, that is, the correlation length (see
Eq. (5.30) and the following discussion).

Finally, we can substitute Eq. (5.39) into Eq. (5.20) to obtain the nucleation rate, or
at least the way it scales. To do so we should first subtract from the solution in Eq. (5.39)
the value as r → ∞, which will be the spatially constant metastable value of the order
parameter. As an example, we will consider nucleation near the spinodal in one dimension
in Chapter 6, where we will see explicitly how this calculation works. Here, we will use
the fact that we only want the scaling behavior and that the droplet is the size of the
correlation length. Then we can do the spatial integration in Eq. (5.20) by assuming that
the droplet ψ(x/ξ) is a spatial constant up to x ∼ ξ and is zero for larger values of x. By
using the same arguments we employed in the classical case near the coexistence curve we
obtain for the nucleation rate J

J = λ̃s exp[−CβRd(∆h)
3
2
− d

4 ], (5.40)

where C is a constant. If we compare Eq. (5.40) with the Becker-Döring nucleation rate
(Eq. (3.18) and the simple theory in Chapter 1, we are lead to identify the argument of the
exponential in Eq. (5.40) with the free energy cost of the critical droplet. This expression
is the same as that of the cost of a critical phenomenon fluctuation near the spinodal given
in Eq. (5.35).

So far our analysis has shown that the critical droplet, which initiates the decay of
the metastable state, has the linear dimension, and free energy cost, of fluctuations near
the spinodal critical point, and a density which vanishes at the spinodal with the same
critical exponent as the order parameter. These properties lead to the idea that the
critical droplet is a critical fluctuation near the spinodal. We will expand on this point in
Chapter 6. For now we want to make three points about the argument of the exponential
term in Eq. (5.40).

1. The fact that nucleation near the spinodal occurs with droplets that are critical
fluctuations indicates that nucleation near the spinodal is not a “tunneling” from the
bottom of the metastable well to the bottom of the stable well as it is in the classical case.
Rather, it is a “tunneling” from the bottom of the metastable well to the top of the stable
one as ∆h→ 0.
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2. The spinodal is at ∆h = 0. The free energy barrier to nucleation ∆Fc from
Eq. (5.40) is of the form

∆Fc ≈ CβRd(∆h)
3
2
− d

4 . (5.41)

If we want to study nucleation, we must have ∆Fc large, that is, ∆Fc ∼ 10. If ∆h� 1, we
must have R � 1, which implies that spinodal nucleation (nucleation near the spinodal)
can only be a valid description of the nucleation process for systems undergoing deep
quenches with long-range interactions. How long-range do the interactions have to be?
The answer depends on the constant C, which varies from system to system. However,
in simulations of Ising models in d = 3 with a varying range of interaction, non-classical
effects were seen in systems with interaction ranges as short as four lattice constants
[Heermann and Klein, 1983].

3. Equation (5.41) predicts that d = 6 is the upper critical dimension. Above d = 6
it appears even for R = 1 that the nucleation rate is extremely small for small ∆h. This
point was tested by Ray [1991] and is consistent with his results.
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